Algorithms for NLP

Tagging / Parsing

Taylor Berg-Kirkpatrick — CMU
Slides: Dan Klein — UC Berkeley

% So How Well Does It Work?

= Choose the most common tag
= 90.3% with a bad unknown word model
= 93.7% with a good one

= TnT (Brants, 2000):

= A carefully smoothed trigram tagger
= Suffix trees for emissions
= 96.7% on WSJ text (SOTA is 97+%)

= Noise in the data
= Many errors in the training and test corpora

DT NN IN NN VBD NNS VBD

The average of interbank offered rates plummeted ...

= Probably about 2% guaranteed error
from noise (on this data)

JJ JJ NN
chief executive officer

NN JJ NN
chief executive officer

JJ NN NN
chief executive officer

NN NN NN
chief executive officer

p 3 Overview: Accuracies

= Roadmap of (known / unknown) accuracies:

= Most freq tag: ~90% / ~50%
= Trigram HMM: “95% \
Most errors
* ThT (HMM++): 96.2% / 86.0% on unknown
words
= Maxent P(t|w): 93.7% / 82.6%
= MEMM tagger: 96.9% / 86.9%
= State-of-the-art: 97+% / 89+%

= Upper bound: ~98%

Common Errors

= Common errors [from Toutanova & Manning 00]

NN NNP NNPS RB RP IN VB VBD VBN VBP Total
1] 177 56 0 61 2 5 10 15 108 0 488
NN Q44 0 103 0 12 | 129 5 6 19 525
NNP 7 106 o 132 5 0 7 5 1 2 0 427
NNPS 0 110 O 0 0 0 0 0 0 0 142
RB 21 7 0 0 16 138 1 0 0 0 295
RP 0 0 0 39 0 65 0 0 0 0 104
IN 0 1 0 @69 103 0 1 0 0 0 323
VB 64 9 o 2 0 1 0 4 7 5 189
VBD 5 3 o o o o0 3 0 2 166
VBN 3 3 o 6 0 0 3 108 1 221
VBP 34 3 1 L0 2 49 6 0 104
Total 536 348 144 317\ 122 279 102 140 : 8 3651

NN/JJ NN VBD RP/IN DT NN RB VBD/VBN NNS

official knowledge made up the story recently sold shares

Richer Features

p 3 Better Features

= Can do surprisingly well just looking at a word by itself:

= Word the: the »> DT

= |Lowercased word Importantly: importantly — RB
= Prefixes unfathomable: un- — JJ

= Suffixes Surprisingly: -ly —> RB

= Capitalization Meridian: CAP — NNP

= Word shapes 35-year: d-x —> JJ

= Then build a maxent (or whatever) model to predict tag
= Maxent P(t|w): 93.7% / 82.6% @

% Why Local Context is Useful

= |Lots of rich local information!

RB

PRP VBD IN RB IN PRP VBD
They left assoonas he arrived.

= We could fix this with a feature that looked at the next word

JJ

NNP NNS VBD VBN
Intrinsic flaws remained undetected .

= We could fix this by linking capitalized words to their lowercase versions
= Solution: discriminative sequence models (MEMMs, CRFs)

= Reality check:
= Taggers are already pretty good on newswire text...
= What the world needs is taggers that work on other text!

W Sequence-Free Tagging?

= What about looking at a word and its @
environment, but no sequence information?

= Add in previous / next word the @ @ @

» Previous / next word shapes X_ X
= Crude entity detection e (Inc.|Co.)
= Phrasal verb in sentence? put

= Conjunctions of these things

= All features except sequence: 96.6% / 86.8%
= Uses lots of features: > 200K

¥

Named Entity Recognition

= Other sequence tasks use similar models

= Example: name entity recognition (NER)

PER PER O

O O O

@)

@)

ORG

O O O O O LOC LOC O

Tim Boon has signed a contract extension with Leicestershire which will keep him at Grace Road .

Local Context

Prev | Cur Next
State | 7?7 LOC | ?7??
Word | at Grace | Road
Tag IN NNP | NNP
Sig X XX XX

p 3 MEMM Taggers

= |dea: left-to-right local decisions, condition on previous tags
and also entire input

P(tlw) = || Pme(ti|lw, t;—1,t;-2)
(4
= Train up P(t.|w,t,_1,t.,) as a normal maxent model, then use to score
seguences
= Thisis referred to as an MEMM tagger [Ratnaparkhi 96]
= Beam search effective! (Why?)
= What about beam size 1?

= Subtle issues with local normalization (cf. Lafferty et al 01)

p 3 NER Features

Feature Weights

Because of regularization Feature Type Feature | PERS LOC
term, the more common — _
prefixes have larger W at -0.73 | 0.94
weights even though — Current word Grace 0.03| 0.00
entlre-worq .features are First char or word G 0.45| -0.04
more specific.
Current POS tag NNP 0.47 0.45
| Prev and cur tags IN NNP -0.10 0.14
Local Context Previous state Other -0.70 | -0.92
Prev | Cur Next Current signature XX 0.80 0.46
State | Other |LOC | 2722 Prev state, cur sig O-XXx 0.68 0.37
Word | at Grace | Road Prev-cur-next sig X-XX-XX -0.69 0.37
Tag IN NNP | NNP P. state - p-cur sig O-x-Xx -0.20 0.82
Sig X XX XX
Total: -0.58 2.68

E& Decoding

= Decoding MEMM taggers:
= Just like decoding HMMs, different local scores
= Viterbi, beam search, posterior decoding

= Viterbi algorithm (HMMs):
5i(s) = argmax P(s[s') P(w;_1]s)8;_1(s")
S/

= Viterbi algorithm (MEMMs):

6;(s) = argmax P(s|s’,w)é;_1(s)
/

S
= General:

6;(s) = argmax ¢;(s’, s)6;_1(s")
S/

Conditional Random Fields
(and Friends)

p 3 Maximum Entropy |

= Remember: maximum entropy objective

L(w)=)>_ (WTfi(yi) —log)~ eXD(WTfi(Y))>
y

(

= Problem: lots of features allow perfect fit to training set
= Regularization (compare to smoothing)

max Z (wai(yi) — log Zexp(wﬂ}(y))) —kHWHQ
i y

EﬁDerivative for Maximum Entropy

L(w) = —k||w[|*+Y_ (WTfi(yi) — log ZQXD(WTfi(Y)))
7 y

OL(w) = —2kwnp+)_ (fi(yi)n — ZP(Y|Xi)fi(Y)n)
y

Expected count of

Big weights are bad feature n in predicted
candidates

OWp,

Total count of feature n
in correct candidates

p 3 Perceptron Review

[Collins 01]
p 3 Perceptron

" Linear model:

score(t|w) = A, w)

= ... that decompose along the sequence
T :
= A Z f(t’u ti—1, W, ’L)
7
= ... allow us to predict with the Viterbi algorithm

t* = arg max score(t|w)
t

= ... which means we can train with the perceptron algorithm
(or related updates, like MIRA)

% Conditional Random Fields

= Make a maxent model over entire taggings
= MEMM

P(t|W) — H Z](-Z) exp ()\Tf(tiv t’i—lawa Z))
= CRF
P(tlw) = Z(lw) exp (A £(t,w))

Z(];N) exp (AT Z f(tia ti—1,W, Z))

H ¢z(tz> ti— 1)

Z()

E& CRFs

Like any maxent model, derivative is:

OLQ) _ 5~ (fko:k) _ ZP@wk)fk(t))
O k t

So all we need is to be able to compute the expectation of each feature
(for example the number of times the label pair DT-NN occurs, or the
number of times NN-interest occurs) under the model distribution

Critical quantity: counts of posterior marginals:

count(w,s) = Y P(t; = s|w)

1W; =W

count(s — s') = Y P(ti_1 =s,t; = s'|w)

(2

Efi Computing Posterior Marginals

= How many (expected) times is word w tagged with s?

count(w,s) = Y P(t; = s|lw)

TIW; =W
* How to compute that marginal? ai(s) = Y ¢i(s,8)i_1(s")
O 0 0 O 0O 0 Bi(s) = > ¢ix1(s,8)Biy1(s)
® ® © @ ® O S e
o _«ai(s)Bi(s
© © © O 0O O P(t;=slw) = o~ (END)
© 0 O O© O 0
© © 0 © 0 0

START Fed

—
—
—

END

E& Global Discriminative Taggers

* Newer, higher-powered discriminative sequence models

CRFs (also perceptrons, M3Ns)
Do not decompose training into independent local regions

Can be deathly slow to train — require repeated inference on training
set

= Differences tend not to be too important for POS tagging
= Differences more substantial on other sequence tasks
= However: one issue worth knowing about in local models

“Label bias” and other explaining away effects

MEMM taggers’ local scores can be near one without having both
good “transitions” and “emissions”

This means that often evidence doesn’t flow properly
Why isn’t this a big deal for POS tagging?
Also: in decoding, condition on predicted, not gold, histories

Eﬁ Transformation-Based Learning

= [Brill 95] presents a transformation-based tagger
= Label the training set with most frequent tags

DT MD VBD VBD .
The can was rusted.

= Add transformation rules which reduce training mistakes

= MD— NN:DT__
= VBD —> VBN :VBD __.

= Stop when no transformations do sufficient good
= Does this remind anyone of anything?

= Probably the most widely used tagger (esp. outside NLP)
= ... but definitely not the most accurate: 96.6% / 82.0 %

Learned Transformations

= What gets learned? [from Brill 95]

Change Tag
| From | To Condition
1 NN VB Previous tag is 70
2 | VBP VB One of the previous three tags is MD
3 NN VB One of the previous two tags is MD
4 VB NN One of the previous two tags is DT
5 | VBD | VBN | One of the previous three tags is VBZ
6 | VBN | VBD Previous tag is PRP
7 | VBN | VBD Previous tag is NNP
8 | VBD | VBN Previous tag is VBD
9 | VBP | VB Previous tag is 70
10 | POS | VBZ Previous tag is PRP
11| VB | VBP Previous tag is NNS
12 | VBD | VBN One of previous three tags is VBP
13| IN wDT One of next two tags is VB
14 | VBD | VBN One of previous two tags is VB
15| VB VBP Previous tag is PRP
16 | IN | WDT Next tag is VBZ
17 IN DT Next tag is NN
18 JJ NNP Next tag is NNP
19 IN wWDT Next tag is VBD
20 | JJR | RBR Next tag is JJ

Change Tag
| From | To Condition
1 NN | NNS Has suffix -s
2 NN CD Has character .
3 NN JJ Has character -
1 NN | VBN Has suffix -ed
5 | NN | VBG Has suffix -ing
6 77 RB Has suffix -ly
7 77 JJ Adding suffix -ly results in a word.
8 | NN CD The word $ can appear to the left.
9 NN JJ Has suffix -al
10 | NN VB | The word would can appear to the left.
11 | NN CD Has character 0
12 | NN JJ The word be can appear to the left.
13 | NNS JJ Has suffix -us
14 | NNS | VBZ The word it can appear to the left.
15 | NN JJ Has suffix -ble
16 | NN JJ Has suffix -ic
17 | NN CD Has character 1
18 | NNS | NN Has suffix -ss
19 77 JJ Deleting the prefix un- results in a word
20 | NN JJ Has suffix -ive

¥

EngCG Tagger

= English constraint grammar tagger

[Tapanainen and Voutilainen 94]
Something else you should know about
Hand-written and knowledge driven

“Don’t guess if you know” (general point
about modeling more structure!)

Tag set doesn’t make all of the hard
distinctions as the standard tag set (e.g.
JJ/NN)

They get stellar accuracies: 99% on their
tag set

Linguistic representation matters...

... but it’s easier to win when you make up

the rules

walk
walk <SV> <8V0> V SUBJUNCTIVE VFIN
walk <SV> <Sv0> V IMP VFIN
walk <SV> <SV0> V INF
walk <SV> <SV0> V PRES -SG3 VFIN
walk N NOM SG

walk V-SUBJUNCTIVE V-IMP V-INF
V-PRES-BASE N-NOM-SG

p 3 Domain Effects

= Accuracies degrade outside of domain
= Up to triple error rate

= Usually make the most errors on the things you care about
in the domain (e.g. protein names)

= Open questions

= How to effectively exploit unlabeled data from a new
domain (what could we gain?)

= How to best incorporate domain lexica in a principled way
(e.g. UMLS specialist lexicon, ontologies)

Unsupervised Tagging

W Unsupervised Tagging?

= AKA part-of-speech induction
= Task:

" Raw sentences in

* Tagged sentences out
= Obvious thing to do:
= Start with a (mostly) uniform HMM

" Run EM
" |nspect results

W EM for HMMs: Process

= Alternate between recomputing distributions over hidden variables (the
tags) and reestimating parameters

= Crucial step: we want to tally up how many (fractional) counts of each
kind of transition and emission we have under current params:

count(w,s) = Y P(t; = s|lw)

W =W

count(s — §') = ZP(tz’—l = s,t; = s'|w)
)

= Same quantities we needed to train a CRF!

% EM for HMMs: Quantities

= Total path values (correspond to probabilities here):

a;(s)

P(wo .. Wy, Si)
> P(sglsi—1)P(wj|si)o—1(si—1)

Si—1

P(w; + 1...wnpls;)

> P(sjt1]si)P(wjt1]8i+1)8i+1(si+1)
Si+1

Bi(s)

W& The State Lattice / Trellis

ONONONMONONO
ONONOMONONO
ONONONMONONO
ONONONMONONO
ONONONMONONO
ONONONMONONO

START Fed raises interest rates END

W EM for HMMs: Process

= From these quantities, can compute expected transitions:

_ Si0i(s)P(|5) P(wils)Biy1(s')

count(s — s') B(w)

" And emissions:

Zi:wi=w O‘i(s)ﬁi—l—l (s)

count(w, s) = B(w)

p 3 Merialdo: Setup

= Some (discouraging) experiments [Merialdo 94]

= Setup:
®= You know the set of allowable tags for each word

= Fix k training examples to their true labels
= Learn P(w|t) on these examples
= Learn P(t|t_,,t,) on these examples

= On n examples, re-estimate with EM

= Note: we know allowed tags but not frequencies

¥

Merialdo: Results

Number of tagged sentences used for the initial model

0 100 2000 5000 10000 20000 all

Iter Correct tags (% words) after ML on 1M words
0 770 900 954 962 96.6 96.9 97.0
1 805 926 958 963 96.6 96.7 96.8
2 818 930 957 961 96.3 96.4 96.4
3 830 931 954 958 96.1 96.2 96.2
4 840 930 952 955 958 96.0 9.0
5 848 929 951 954 956 95.8 95.8
6 853 928 949 952 955 95.6 95.7
7 858 928 947 951 95.3 95.5 95.5
8 861 927 946 950 95.2 95.4 95.4
9 863 926 945 949 951 953 95.3
10 B866 926 944 948 950 95.2 95.2

“& Distributional Clustering

president |the of \
president |the said «/
governor |the __ of
governor |the __ appointed
said sources ¢
said president __ that
reported |sources ¢

that the downturn wdas over ¢

president

governor

said
reported

[Finch and Chater 92, Shuetze 93, many others]

W& Distributional Clustering

" Three main variants on the same idea:

= Pairwise similarities and heuristic clustering
= E.g. [Finch and Chater 92]
= Produces dendrograms
= Vector space methods
= E.g. [Shuetze 93]
= Models of ambiguity
= Probabilistic methods
= Various formulations, e.g. [Lee and Pereira 99]

Nearest Neighbors

word | nearest neighbors

accompanied | submitted banned financed developed authorized headed canceled awarded barred
almost virtually merely formally fully quite officially just nearly only less

causing reflecting forcing providing creating producing becoming carrying particularly
classes elections courses payments losses computers performances violations levels pictures
directors professionals investigations materials competitors agreements papers transactions
goal mood roof eye image tool song pool scene gap voice

Japanese chinese iraqi american western arab foreign european federal soviet indian
represent reveal attend deliver reflect choose contain impose manage establish retain

think behieve wish know realize wonder assume feel say mean bet

york angeles francisco sox rouge kong diego zone vegas inning layer

on through in at over into with from for by across

must might would could cannot will should can may does helps

they we you 1 he she nobody who it everybody there

Eﬁ Dendrograms |

i stay
stand
st.atrt
put
take

et
ring
FWC
- e
1] . 19YH
Pronouns: Object s ick
l Auxiliary Verbs t(l?aVC
hrow
— Adverbs turn
7 . — move
WH words pugh
Verb: “to be” 1 pu
Determiners cut
Pronouns: Object/Possess. %ryj \
Prepositions |
Interjections , 1 Shﬁw
Nouns: Proper (names) ' as
» . ~ ' ' bC
Adjectives: Colour, oat
Number _|-| read
Adjectives play
use
Nouns find
| . buy
Nouns: Proper (names) {}V(E‘%Il
Verbs gg%l
-I Verbs: -ing form gﬁlk
Verbs L gl%\\?
help
fix
hit \
rea
P

E& Dendrograms —

L ove
T for
with
at
lf)rom
Dy
waﬁfr 11}t0
mi O
paper 1 than
| Juice about
money S
B food ° I g?t.m
| stlﬁff | under
| gga ce bch%nd
cheese ﬂlc:é
| cream i
— b’llllttcr 3;)(:1 y
cake
| soup down
neat
f)l‘cad back
-I'l fish off
c away
CﬁlngCIl home
» orange around
apple together
o cookie outside
sandwich mside
— dinner through
| lunch round
i breakfast ' upstairs
igppcr 1 downstairs
candy i11011g .
somewhere
straight
either

anymorc

p 3 Vector Space Version

= [Shuetze 93] clusters words as points in R"

context counts

= Vectors too sparse, use SVD to reduce
context counts

2 _

\ Cluster these 50-200 dim vectors instead.

W& A Probabilistic Version?

P(S,C) :HP(Ci)P(Wi | c)P(W,_, W, | ¢;)

Cy Cs

Cq Cy C3 Ce C7 Gy
ST SN\

¢ the president said that the downturn was over ¢

Cl< 62< C3<C4< CS< C6< C7<] C8

A A AA A A

¢ the president said that the downturn was over ¢

p 3 What Else?

= Various newer ideas:
= Context distributional clustering [Clark 00]
= Morphology-driven models [Clark 03]
= Contrastive estimation [Smith and Eisner 05]
= Feature-rich induction [Haghighi and Klein 06]

= Also:
= What about ambiguous words?

= Using wider context signatures has been used for learning
synonyms (what’s wrong with this approach?)

= Can extend these ideas for grammar induction (later)

Computing Marginals

P(sy,x)

P(s¢lz) = Pl)

= sum of all paths through s at t
sum of all paths

Forward Scores

.'5.
o
5

’Ut(St) = Isnax vt—l(St—l)fbt(St—l, St)
t—1

ai(se) = Z ar—1(8¢—1)Pt(Se—1, S¢t)

St—1

Backward Scores

IBt(St) = Z 5t+1(8t+1)¢t(8t, 3t+1)

St+1

Total Scores

P(s¢,x) = oy(s¢)Be(st)

P(z) =) ai(s:)Bi(st)

= ar(stop)

= Po(start)

Syntax

Parse Trees

ROOT
|
S
NP VP
/‘A*-.
DT NN VBD NP , S
| | | —_— | |
The move followed NP PP , VP
DT NN IN NP VBG NP
| | | T —— | T —
a round of NP PP reflecting NP PP
1 NNS IN NP DT VBG NN IN NP
| | | T | | | |
similar increases by | NNS a continuing decline in DT NN
| | | |
other lenders that market

The move followed a round of similar increases by other lenders,
reflecting a continuing decline in that market

E& Phrase Structure Parsing

= Phrase structure parsing
organizes syntax into
constituents or brackets

= |n general, this involves
nested trees

= Linguists can, and do,
argue about details

= Lots of ambiguity

= Not the only kind of
syntax...

S
/\

NPSg \'Psg
—_’/——7’\ T
DT NN PP rises to ...
| | — T
The velocity IN NPp

|
of the seismic waves

new art critics write reviews with computers

¥

Constituency Tests

= How do we know what nodes go in the tree?

= Classic constituency tests:

= Substitution by proform
= Question answers

= Semantic gounds
= Coherence
= Reference
= |dioms

= Dislocation
= Conjunction

S

/\
NP VP
/\ /\
DT NNS VP PP
TN
The children VBD NP IN NP
VAN VAN

ate DT NN with DT NN

the cake a spoon

= Cross-linguistic arguments, too

p 3 Conflicting Tests

= Constituency isn’t always clear

= Units of transfer:
= think about ~ penser a
= talk about ~ hablar de

NPg,
' _ DT NN PP
* Phonological reduction: The velecity T Nby
P
.) I
= |willgo— I'll go of the seismic waves
= | want to go — | wanna go \/

||
a le centre — au centre La vélocité des ondes sismiques

= Coordination
= He went to and came from the store.

p 3 Classical NLP: Parsing

= Write symbolic or logical rules:

Grammar (CFG) Lexicon
ROOT - S NP — NP PP NN — interest
S —>NPVP VP — VBP NP NNS — raises
NP — DT NN VP —» VBP NP PP VBP — interest
NP — NN NNS PP — IN NP VBZ — raises

= Use deduction systems to prove parses from words
= Minimal grammar on “Fed raises” sentence: 36 parses
= Simple 10-rule grammar: 592 parses
= Real-size grammar: many millions of parses

* This scaled very badly, didn’t yield broad-coverage tools

Ambiguities

E& Ambiguities: PP Attachment

S
/\
NP VP
/\
D'l'/\NNS VP PP
TILe chiILren VBD NP IN NP

N L AN

ate DT NN with DT NN

the cake a spoon

S

/\
NP VP
/\ A
DT NNS VBD NP
| | | T~
The children ate NP PP
N
DT NN IN NP
| | N

the cake with DT NN

a spoon

The board approved [it\acquisitionNby Royal Trustco Ltd.]

of Toronto]

[for $27 a share]

at its monthly meeting].

p 3 Attachments

= | cleaned the dishes from dinner

= | cleaned the dishes with detergent

= | cleaned the dishes in my pajamas

= | cleaned the dishes in the sink

W Syntactic Ambiguities |

" Prepositional phrases:
They cooked the beans in the pot on the stove with handles.

= Particle vs. preposition:
The puppy tore up the staircase.

= Complement structures
The tourists objected to the quide that they couldn’t hear.
She knows you like the back of her hand.

" Gerund vs. participial adjective
Visiting relatives can be boring.
Changing schedules frequently confused passengers.

W Syntactic Ambiguities |

= Modifier scope within NPs
impractical design requirements
plastic cup holder

= Multiple gap constructions
The chicken is ready to eat.
The contractors are rich enough to sue.

= Coordination scope:
Small rats and mice can squeeze into holes or cracks in the

wall.

p 3 Dark Ambiguities

® Dark ambiguities: most analyses are shockingly bad
(meaning, they don’t have an interpretation you can get

your mind around) ROOT
|
S
This analysis corresponds to | I\F’ /\P\ | |
the correct parse of R I >p L
“This will panic buyers !'” . N
This is VB NP
| |
panic ~ NN
buying

= Unknown words and new usages

= Solution: We need mechanisms to focus attention on the
best ones, probabilistic techniques do this

Ambiguities as Trees

VP

I B
/\
1 ~

VBG / NP

S
DS
S

.. raising N\p PP

8 30 billion from debt ..

/\
,/

’/

Cd

NP VP

v
Cd
’

- o o o ()

NP PP had already ...

..Lehman Hutton Inc. by yesterday afternoon

-
-
-
-
-
-

PDT DT I;DT PDT

... half a dozen newspapers
(c) vE
A\DJP
VBZ ADVP N ADJP
| RN
s RB JJ

Jjust e

PCFGs

E&Probabilistic Context-Free Grammars

= A context-free grammaris a tuple<N, T, S, R>

= N :the set of non-terminals
= Phrasal categories: S, NP, VP, ADJP, etc.
= Parts-of-speech (pre-terminals): NN, JJ, DT, VB
= T:the set of terminals (the words)
= S:the start symbol
= Often written as ROOT or TOP
= Not usually the sentence non-terminal S
= R:the set of rules
= OftheformX—=>Y,Y, .Y, withX,Y, e N
= Examples:S— NP VP, VP — VP CCVP
= Also called rewrites, productions, or local trees

= A PCFG adds:
= Atop-down production probability per rule P(Y; Y, ... Y, | X)

p 3 Treebank Sentences

((S (NP-SBJ The move)
(VP followed
(NP (NP a round)
(PP of
(NP (NP similar increases)

(PP by
(NP other Tlenders))

(PP against
(NP Arizona real estate loans)))))

(S-ADV (NP-SBJ *)
(VP reflecting
(NP (NP a continuing decline)
(PP-LOC 1n
(NP that market))))))
)

p 3 Treebank Grammars

= Need a PCFG for broad coverage parsing.
= Can take a grammar right off the trees (doesn’t work well):

ROOT
SI, ROOT —» S

T S > NP VP.
NP VP .

N ‘ NP —> PRP
PRP VBD ADJP .

| | VP — VBD ADJP
He was 1]

riglht

= Better results by enriching the grammar (e.g., lexicalization).
= (Can also get state-of-the-art parsers without lexicalization.

£ Treebank Grammar Scale

= Treebank grammars can be enormous

= As FSAs, the raw grammar has ~10K states, excluding the lexicon

= Better parsers usually make the grammars larger, not smaller

NP

f

1

VBN ce

I\ /{

NNS
1

|

NNP

ﬁ

}f@ Chomsky Normal Form

" Chomsky normal form:
= All rules oftheformX —>YZorX —>w

= |n principle, this is no limitation on the space of (P)CFGs
= N-ary rules introduce new non-terminals

VP

T

VBD NP PP PP

=)

VP

[VP — VBD NP PP]
[VP — VBD NP o]
/\

VBD NP PP PP

= Unaries / empties are “promoted”
" |n practice it’s kind of a pain:
= Reconstructing n-aries is easy
= Reconstructing unaries is trickier
= The straightforward transformations don’t preserve tree scores

= Makes parsing algorithms simpler!

CKY Parsing

p 3 A Recursive Parser

bestScore (X,1, 3, s)
if (J = 1i+1)
return tagScore (X,s[i])
else
return max score (X->YZ) *
bestScore(Y,i,k) *
bestScore (Z,k, j)

= Will this parser work?
= Why or why not?
= Memory requirements?

p 3 A Memoized Parser

" One small change:

bestScore (X,1i,j, s)
if (scores[X][i][j] == null)
if (J = i+1)
score = tagScore(X,s[i])
else
score = max score (X->YZ) *
bestScore(Y,i,k) *
bestScore (Z,k, j)
scores[X] [1][]J] = score
return scores[X][1i][]]

E& A Bottom-Up Parser (CKY)

= Can also organize things bottom-up

bestScore (s) X
for (i : [0,n-1]) /”\
for (X : tags[s[i]]) Y Z

score[X] [i] [i+1] = /////”\\\///\\\\\
tagScore (X,s[1])

for (diff : [2,n])
for (1 : [0,n-diff])
j =1 + diff
for (X->YZ : rule)
for (k : [i+1, J-1])
score[X] [1][]J] = max score[X][1i][]],
score (X->YZ) *
score[Y] [1] [k] *
score[Z] [k][]]

i K

p 3 Unary Rules

= Unary rules?

bestScore (X,1i,]j, s)
if (3 i+l)

return tagScore (X,s[i])

else
return max max score (X->YZ) *
bestScore(Y,i,k) *
bestScore (Z,k, j)
max score (X->Y) *
bestScore(Y,1i,)

p 3 CNF + Unary Closure

= \We need unaries to be non-cyclic
= Can address by pre-calculating the unary closure
= Rather than having zero or more unaries, always have

exactly one
VP SBAR
VP —
VBD NP — | S — |
— NP | VP
DT NN — VP
DT NN

= Alternate unary and binary layers
= Reconstruct unary chains afterwards

Alternating Layers

bestScoreB(X,1,7,s)
return max max score (X->YZ) *
bestScoreU(Y,1i,k) *
bestScoreU(Z,k, j)

bestScoreU(X,1,7,s)
if (J = i+1)
return tagScore (X,s[i])
else
return max max score (X->Y) *
bestScoreB(Y,1i,)

Analysis

}f@ Memory

= How much memory does this require?
= Have to store the score cache
= Cache size: |symbols| *n? doubles

= For the plain treebank grammar:
= X~ 20K, n=40, double ~ 8 bytes =~ 256 MB
= Big, but workable.

" Pruning: Beams
= score[X][i][j] can get too large (when?)

= Can keep beams (truncated maps scoreli][j]) which only store the best few
scores for the span [i,j]

" Pruning: Coarse-to-Fine
= Use a smaller grammar to rule out most X|i,j]
= Much more on this later...

p 3 Time: Theory

= How much time will it take to parse?

" For each diff (<= n)

= For each i (<= n) X
" ForeachruleX—>YZ /\
= For each split point k Y [z
Do constant work /\ /\
i k j

* Total time: |rules|*n3

= Something like 5 sec for an unoptimized parse of a
20-word sentence

p 3 Time: Practice

= Parsing with the vanilla treebank grammar:

360

' ~ 20K Rules
300 |
(not an
. ~— optimized
180 | parser!)
120 | Observed
exponent:
0 3.6
0 10 20 30 40 50

Sentence Length

N
N
=)

Avg. Time (seconds)

o
o

= Why’s it worse in practice?
= Longer sentences “unlock” more of the grammar
= All kinds of systems issues don’t scale

% same-Span Reachability

ADIP ADVP
FRAG INTJ NP
PP PRN QP S
SBAR UCP VP
WHNP

SBARQ D
CWHADVPD

W& Rule State Reachability

Example: NP CC e

@ - oo NP . ~0—C .o 1Alignment

@ —————m @ ——— @ — — = — — — - - N Alignments

= Many states are more likely to match larger spans!

}f@ Efficient CKY

= | ots of tricks to make CKY efficient

= Some of them are little engineering details:

= E.g., first choose k, then enumerate through the Y:[i,k] which are
non-zero, then loop through rules by left child.

= Optimal layout of the dynamic program depends on grammar,
input, even system details.
= Another kind is more important (and interesting):
= Many X[i,j] can be suppressed on the basis of the input string

= WeEe’'ll see this next class as figures-of-merit, A* heuristics, coarse-
to-fine, etc

Agenda-Based Parsing

W Agenda-Based Parsing

= Agenda-based parsing is like graph search (but over a
hypergraph)
= Concepts:

= Numbering: we number fenceposts between words

= “Edges” or items: spans with labels, e.g. PP[3,5], represent the sets of
trees over those words rooted at that label (cf. search states)

= A chart: records edges we’ve expanded (cf. closed set)
= An agenda: a queue which holds edges (cf. a fringe or open set)

PP

critics write reviews with computers
0 1 2 3 4)

p 3 Word Items

= Building an item for the first time is called discovery. Items go
into the agenda on discovery.

" Toinitialize, we discover all word items (with score 1.0).

AGENDA
critics[0,1], write[1,2], reviews][2,3], with[3,4], computers[4,5]

CHART [EMPTY]
o o o o o o
0 1 2 3 4 5

critics write reviews with computers

p 3 Unary Projection

= When we pop a word item, the lexicon tells us the tag item
successors (and scores) which go on the agenda

critics[0,1] write[1,2] reviews[2,3] with[3,4] computers[4,5]

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[4,5]
® critics write ® reviews ® with ® computers ®
0 1 2 3)

critics write reviews with computers

p 3 ltem Successors

= When we pop items off of the agenda:
= Graph successors: unary projections (NNS — critics, NP — NNS)

Y[i,j] with X — Y forms X]i,]]

= Hypergraph successors: combine with items already in our chart
Y[i,j] and Z[j,k] with X — Y Z form X][i k]

= Enqueue / promote resulting items (if not in chart already)
= Record backtraces as appropriate X
= Stick the popped edge in the chart (closed set)

= Queries a chart must support: % 7

= |s edge X[i,j] in the chart? (What score?)
= What edges with label Y end at position j? /\/\

What edges with label Z start at position i?

p 3 An Example

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] VP[1,2] NP[2,3] NP[4,5] S[0,2]
VP[1,3] PP[3,5] ROOTI[0,2] S[0,3] VP[1,5] NP[2,5] ROOT[0,3] S[0,5] ROOT[0,5]
ROOT

critics write reviews with computers
0 1 2 3 4)

}& Empty Elements

= Sometimes we want to posit nodes in a parse tree that don’t
contain any pronounced words:

| want you to parse this sentence
| want [] to parse this sentence
* These are easy to add to a agenda-based parser!
= For each position i, add the “word” edge ¢]i,]

= Add rules like NP — ¢ to the grammar
* That’s it!

NP VP

like to parse 4 empties

b3 UCS / A*

= With weighted edges, order matters

= Must expand optimal parse from
bottom up (subparses first)

= CKY does this by processing smaller
spans before larger ones

= UCS pops items off the agenda in
order of decreasing Viterbi score

= A* search also well defined

= You can also speed up the search
without sacrificing optimality
= (Can select which items to process first

= Can do with any “figure of merit”
[Charniak 98]

= |f your figure-of-merit is a valid A*
heuristic, no loss of optimiality [Klein
and Manning 03]

E& (Speech) Lattices

= There was nothing magical about words spanning exactly
one position.

= When working with speech, we generally don’t know
how many words there are, or where they break.

= We can represent the possibilities as a lattice and parse
these just as easily.

lvan

eyes

./\. awe
|

saw ‘ve van

Learning PCFGs

p 3 Treebank PCFGs

= Use PCFGs for broad coverage parsing

[Charniak 96]

= (Can take a grammar right off the trees (doesn’t work well):

ROOT
Sl) ROOT - S 1
e S—>NPVP.]
NP VP .
| N > NP — PRP 1
PRP VBD ADJP .
| | | VP — VBD ADJP 1
He was]]
|
right
Model F1

Baseline 72.0

}ﬁ Conditional Independence?

S
B
NP VP
| ——
PRP VBD NP
| I —

She heard DT NN

the noise

= Not every NP expansion can fill every NP slot
= A grammar with symbols like “NP” won’t be context-free
= Statistically, conditional independence too strong

p 3 Non-Independence

" |[ndependence assumptions are often too strong.

All NPs NPs under S NPs under VP

21% 23%
o

11%
° 9%

.. 6%

NPPP DTNN PRP NPPP DTNN PRP NPPP DTNN PRP

4%

= Example: the expansion of an NP is highly dependent on the
parent of the NP (i.e., subjects vs. objects).

= Also: the subject and object expansions are correlated!

E& Grammar Refinement

" Example: PP attachment

VP NP

TNl T T

They

raised

a point of order

Eﬁ Grammar Refinement

PRP VBD NP Abk%e
She heard DT NN
| |
the noise

= Structure Annotation [Johnson ’98, Klein&Manning '03]
= Lexicalization [Collins 99, Charniak "00]
= Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]

Structural Annotation

}f@ The Game of Designing a Grammar

-
NP"S VP

| —
PRP VBD NP"VP

| | —
She heard DT NN

| |
the noise

= Annotation refines base treebank symbols to
improve statistical fit of the grammar

= Structural annotation

}f; Typical Experimental Setup

= Corpus: Penn Treebank, WSJ

Training: sections 02-21

Test: section 23

= Accuracy — F1: harmonic mean of per-node labeled
precision and recall.

= Here: also size — number of symbols in grammar.

W& Vertical Markovization

: Order 1 \'70 Order 2
= Vertical Markov
order: rewrites (s> /SR,OOT\
depend on past k o) NPS b .
ancestor nodes. | N |
PRP VBD ADJP . PRP VBD ADVP'VP .
(cf. parent | | : | | A
annotation) He was right He was right
79% 25000
78%
7% @ 20000
76% - g 15000
;Z‘Zo . € 10000 -
% A 7]
73% - 5000 A
72% A 0 -
1 2v. 2 3v 3 1 2v 2 3v 3

Vertical Markov Order Vertical Markov Order

£ Horizontal Markovization

Order 1 Order o0 Y
NP NP
I NNP NP-... NNPe NNP NP—NNRe
NNP NNP NNP —
- Tt e
NNP NP-... NNPe NNP NP—NNP NNRs
N]l\]p NNP
74% 12000
73% « 9000
(o)
72% € 6000
>
70% 0 | B l | | |
0 1 2v 2 S—aby

Horizontal Markov Order Horizontal Markov Order

p 3 Unary Splits

" Problem: unary RO|OT
rewrites used to S
Y T
transmute NP VP ,
. | /\
categories so a NN VED ~p
high-probabilit | | _—] T
g p y Revenue was NP , PP
rule can be used. | |
QP , VBG NP
$ 444.9 million including net interest

s Solution: Mark -

unary rewrite Annotation F1 Size

sites with -U Base 778 |75K

UNARY 78.3 |8.0K

E& Tag Splits

* Problem: Treebank tags vr
g o~
are too coarse. TO VP
| /\
to VB SBAR
= Example: Sentential, PP, see. IN'SNT S
. _I N
and other prepositions if NP VIP
are all marked IN. NlN VBZ
| |
advertising works
= Partial Solution:
= Subdivide the IN tag. Annotation | F1 Size
Previous 78.3 8.0K

SPLIT-IN 80.3 |8.1K

E& A Fully Annotated (Unlex) Tree

ROOT
|
S"ROOT-v
S KPSH V& BFY S 7S
“ DT-U'NP VBZBEVP NP*VP-B ! "
| | N
This IS NN'NP NN'NP

panic ~ buying

£ Some Test Set Results

Parser LP LR F1 CB O0CB

Magerman 95 [84.9 |(84.6 (84.7 |1.26 |56.6

Collins 96 86.3 |85.8 |[86.0 |1.14 |59.9

Unlexicalized [{86.9 |85.7 |86.3 |[1.10 |60.3

Charniak 97 |87.4 |87.5 [|87.4 |1.00 |62.1

Collins 99 38.7 |88.6 [88.6 [0.90 |(67.1

= Beats “first generation” lexicalized parsers.
= Lots of room to improve — more complex models next.

Efficient Parsing for
Structural Annotation

¥

Grammar Projections

NP
—> Coarse Grammar — Fine Grammar 7\
S SROOT J)/ \ ~
NP VP , NP'S VP’'S . /N
PRP VBD ADJP . PRP VBD ADVPVP .
AN A
He was right He was right y X Io
y \).(
B S
\@ (NPAS - DTANP N’[...DT]*NP —~
—~ S - — ~— X
)
X

Note: X-Bar Grammars are projections with rules like XP > Y X or XP > X’ Yor X’ > X

—e—

W& Coarse-to-Fine Pruning

For each coarse chart item X[i,j], compute posterior probability:

P (X,1,7) - Pour(X, 1, 7)
P (root,0,n)

< threshold

E.g. consider the span 5to 12:

coarse:

refined:

% Computing (Max-)Marginals

¥

Inside and Outside Scores

p 3 Pruning with A*

" You can also speed up the
search without sacrificing
optimality

" For agenda-based parsers:

= Can select which items to
process first

= Can do with any “figure of
merit” [Charniak 98]

= |f your figure-of-meritis a
valid A* heuristic, no loss of
optimiality [Klein and
Manning 03]

A* Parsing

Estimate SX SXL SXLR TRUE
Summary (1,6,NP) (1,6,NP,VBZ) (1,6, NP,VBZ.,“.”) (entire context)
S S
| |
VP VP S
. —— T T T — e e ——
Best Tree S VBZ NP PP VBZ NP S , NP VP .
—] ——— T T T — e | | —T
PP NP VP IN NP NP |, CC NP VP PRP VBZ NP
P e | — —— — T T AN
IN NP | DT JJ NN VBD DT NNP NNP NNP NNP ‘ ‘ DT JJ NN VBZ NP ‘ ‘ DT NN
| | | | | | | | | | | | | | | | | |
? NP[? 2 2 2 ? 2 VBZ [NP] 2 ? ? ? ? ? VBZ[NP], ? ? ? ? ? VBZ [NP] , PRP VBZ DT NN .
Score —11.3 —13.9 —15.1 —18.1

Lexicalization

}f@ The Game of Designing a Grammar

PRP VBD NP-noise
| | —
She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Structural annotation [Johnson '98, Klein and Manning 03]
= Head lexicalization [Collins ’99, Charniak '00]

Problems with PCFGs

S S
/\ /\
NP VP NP VP
/\ /\ /\ !/\
DT NNS VP PP D‘T N1|\T5 “TD /N_P\
‘ ‘ /\ /\ The children ate NP PP
The children VBD NP IN NP /\
| AN | N DT NN IN NP
ate DT NN with DT NN ‘ ‘ ‘ /\
’ | ‘ ‘ the cake with DT NN
the cake a spoon | ‘

a spoon

= |f we do no annotation, these trees differ only in one rule:
= VP VPPP
= NP — NPPP

= Parse will go one way or the other, regardless of words
= We addressed this in one way with unlexicalized grammars (how?)
= Lexicalization allows us to be sensitive to specific words

p 3 Problems with PCFGs

/N S

NNS /\

IN NP
NP PP and NNS d| o
| TN | 08 n
NNS IN NP cats NP cC NP
| | | | |
dolgs m NNS NNS and NNS
| | |
houses houses cats

= \What's different between basic PCFG scores here?
= What (lexical) correlations need to be scored?

Lexicalized Trees

Add “head words” to
each phrasal node

= Syntactic vs. semantic
heads

= Headship not in (most)
treebanks

= Usually use head rules,
e.g.:

= NP:
= Take leftmost NP
= Take rightmost N*
= Take rightmost JJ
= Take right child

= VP:
= Take leftmost VB*
= Take leftmost VP
= Take left child

rl!e lav.'lyer I /\
questioned DT NN
I i
the witness
4
S(questioned)
NP(lawyer) VP(questioned)
DT(the) NN(lawyer) /\
| | Vt(questioned) NP(witness)
the lawyer |
questioned

DT(the) NN(witness)
| |

the witness

p 3 Lexicalized PCFGs?

= Problem: we now have to estimate probabilities like

VP(saw) -> VBD(saw) NP-C(her) NP(today)

= Never going to get these atomically off of a treebank

= Solution: break up derivation into smaller steps

VP (saw) VP (saw) VP (saw) VP (saw)

— — T I

VBD (saw) VBD (saw) {NP—C()} VBD (saw) NP-C() NP () VBD (saw) NP-C(her) NP(today)

£ Lexical Derivation Steps

= A derivation of a local tree [Collins 99]

VP (saw)

/ Choose a head tag and word

VBD (saw)

VP (saw)

/ Choose a complement bag

VBD (saw) {Np-C()}

VP (saw)

m Generate children (incl. adjuncts)

VBD (saw) NP-C() NP()

VP (saw)

m Recursively derive children

VBD (saw) NP-C(her) NP(today)

E& Lexicalized CKY

(VP->VBD. . .NP o) [saw] X[h]
/\

(VP->VBD e) [saw] NP [her]

Y[h] Z[n

\
\
\
\
\
AY

i h K h’

bestScore (X,i,j,h)
if (§ = i+l)

return tagScore (X,s[i])

else
return
max max score(X[h]->Y[h] Z[h']) *
bestScore(Y,i,k,h) *
bestScore(Z,k,j,h’)
max score (X[h]->Y[h’] Z[h]) *
k,h', X->Y7,

bestScore(Y,i,k,h’) *
bestScore(Z,k,j,h)

Efficient Parsing for
Lexical Grammars

Ef; Quartic Parsing

= Turns out, you can do (a little) better [Eisner 99]

X[h]

= Gives an O(n%) algorithm
= Still prohibitive in practice if not pruned

Efi Pruning with Beams

= The Collins parser prunes with per-
cell beams [Collins 99]
= Essentially, run the O(n>) CKY

= Remember only a few hypotheses for
each span <i,j>. X[h]

= |f we keep K hypotheses at each span,
2
then we do at most O(nK?) work per YIh Z[h

span (why?) ,
= Keeps things more or less cubic (and in /\ /\

practice is more like linear!)
i h Kk h’

= Also: certain spans are forbidden
entirely on the basis of punctuation
(crucial for speed)

Efi Pruning with a PCFG

= The Charniak parser prunes using a two-pass, coarse-
to-fine approach [Charniak 97+]

= First, parse with the base grammar

= For each X:[i,j] calculate P(X]|i,j,s)
= This isn’t trivial, and there are clever speed ups

= Second, do the full O(n>) CKY
= Skip any X :[i,j] which had low (say, < 0.0001) posterior

= Avoids almost all work in the second phase!

= Charniak et al 06: can use more passes
= Petrov et al 07: can use many more passes

Efi Results

= Some results

= Collins 99 — 88.6 F1 (generative lexical)

* Charniak and Johnson 05 —89.7 / 91.3 F1 (generative
lexical / reranked)

= Petrov et al 06 —90.7 F1 (generative unlexical)
= McClosky et al 06 —92.1 F1 (gen + rerank + self-train)

" However

= Bilexical counts rarely make a difference (why?)
= Gildea 01 — Removing bilexical counts costs < 0.5 F1

Latent Variable PCFGs

Ef; The Game of Designing a Grammar

S
-
NP”S VP
| ——
PRP VBD NP"VP
| I — T

She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar

= Parent annotation [Johnson 98]

Eﬁ The Game of Designing a Grammar

PRP VBD NP-noise
| | —
She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Parent annotation [Johnson 98]
= Head lexicalization [Collins 99, Charniak "00]

Ef; The Game of Designing a Grammar

S
-
NP-1 VP
| _—
PRP VBD NP-2
| | T

She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Parent annotation [Johnson 98]
= Head lexicalization [Collins 99, Charniak '00]
= Automatic clustering?

W& Latent Variable Grammars

Grammar G
SO — NPO VPO ?
5-1 Sy — NP, VPy ?
— N S, — NP, VP, ?
NP-0 VP-1 -0 Sy — NP, VP, ?
| —~ | S, » NP, VP, ?
S PRP-1 VBD-0 ADJP-0 1 o ¥R
— N | | = S, — NP, VP; ?
NP VP . He was right o
NPO — PRP 0 ?
| o~ | . m=ml) NP, —PRP; ?
PRP VBD AD]JP . 5-0 -
| | — — N\ Lo
/ NP-1 VP-1 -0 exicon
He was right | e | A
PRP-0 VBD-0 ADJP-1 . PRP; — She ?
| l —_ ‘e
He was right VBDy — was ?

VBD,; — was ?
VBD,; — was ?

Parse Tree 7
Sentence Derivations ¢ : T Parameters 6

W Learning Latent Annotations

Forward

—

EM algorithm:

» Brackets are known
» Base categories are known
* Only induce subcategories

S[X1]
B
NP[X5] VP[X4] 1X7]
| i /4\ |7 ‘
PRP[X3] VBD[X5] ADJP[Xg] .
| | —
He was right

Just like Forward-Backward for HMMs.

Backward

¥

Refinement of the DT tag

DT
the (0.50)
a (0.24)
The (0.08)

a (0.61) the (0.80) this (0.39) some (0.20)
the (0.19) The (0.15) that (0.28) all (0.19)
an (0.11) a (0.01) That (0.11) those (0.12)

DT-1 DT-2 DT-3 DT-4

¥

Hierarchical refinement

P M
E Em §§~§)

R 1 \LE NN
18 § A G NN A S

o £ {? 3 AN
N S Y
N é\ @ di Y Y

N

\‘l..».,w..._«..w..,w..m,m..‘..w..
 the (0.54)

.
N

o a(0.25)
~ The (0.09)

\)]
I

~some (0.11)

the (0.80)
The (0.15)
a (0.01)

a (061)
the (0.19)
an (0.11)

this (0.39)
that (0.28)
That (0.11)

some (0.20)
all (0.19)

those (0.12)

}ﬁHierarchical Estimation Results

©
o

|

©®
A O

x© o
o DN

Parsing accuracy (F1)

N N
RN » (0 0]
-\

' ' ' ' Model F1
100 300 500 700 900 11

Total Number of gramma| F1at Training 87.3

Hierarchical Training | 88.4

E{i Refinement of the , tag

= Splitting all categories equally is wasteful:

, (1.00)
-
, (1.00) , (1.00)
«— T «— T

, (1.00) , (1.00) , (1.00) , (1.00)

¥

Adaptive Splitting

= Want to split complex categories more

were least useful

Idea: split everything, roll back splits which

o&‘....w..<,;«.».;.‘.,..A.......wu..,,“..w RSN

i N N S
- the (0.5
X RN

1(0.25)

E%:- (0.09)

2060

the (0.19)
an (0.11)

N

\
NENENININ

the (OZ96)
2 (0.01)
The (0.01)

Thé 0.93)
A (0.02)
No (0.01)

W& Adaptive Splitting Results

| | Model F1
Previous 88.4
With 50% Merging |89.5

}f@ Number of Phrasal Subcategories

1S71
100d
X
dravHM
odd
-Om<mw
FLNI
-&>D<IE/
-&OD
OVN
ovdd
dNOD
OS
ddHM
-Fma
->Za
-XZ
Ndd

dNHM

dO

dqvds

,(ﬂﬂﬂmmmmmmﬂmﬁﬁﬁﬁﬁﬁﬁ

drav

S

dAav

dd

dA

dN

Efi Number of Lexical Subcategories

:‘7 HII_III_III_IJ_' HIDID N NN W N B B B e B e B s B s B s

70

S
dd
NAS

HN

[ol

Sayd
M4

-gyy-
1am
$dM
X3

-gd7-
gam
1dd
SOd

| dM

afS)e!
an

| $ddd

ddd
srr
dre

| 00

SdNN
1d

| dan

ZaA

NI

as

| aan

an

[98/

gd

[NaA

NN

[SNN

rr

[dNN

¥

Learned Splits

= Proper Nouns (NNP):

NNP-14 Oct. Nov. Sept.

NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters

NNP-15 New San Wall
NNP-3 York Francisco Street

= Personal pronouns (PRP):

PRP-0 It He I
PRP-1 it he they
PRP-2 it them him

¥

Learned Splits

= Relative adverbs (RBR):

RBR-0
RBR-1
RBR-2

further lower higher
more less More
earlier Earlier later

= Cardinal Numbers (CD):

CD-7
CD-4
CD-11
CD-0
CD-3
CD-9

one two Three
1989 1990 1988
million billion trillion
1 50 100
1 30 31
/8 58 34

Efg Final Results (Accuracy)

< 40 words all
F1 F1
m | Charniak&Johnson ‘05 (generative) 90.1 89.6
Z
@ Split / Merge 90.6 90.1
?n) Dubey ‘05 76.3 -
A Split / Merge 80.8 80.1
o Chiang et al. ‘02 80.0 /6.6
T
< Split / Merge 86.3 83.4

Still higher numbers from reranking / self-training methods

Efficient Parsing for
Hierarchical Grammars

E& Coarse-to-Fine Inference

= Example: PP attachment

S
/\
NP VP
PRP
???7°?°°7?°7?7?
They
\Y% NP PP
RN N
raised DT NN IN NP
I VAN

a point of order

p 3 Hierarchical Pruning

coarse: MNP wP | ..

splitineight: .. | ... [... .. ||| |||]

E{i Bracket Posteriors

¢
2.0%
0202050 %
SERERXR
0% %% % % %%

($
0500000300050%0%0%
oo t0toteretetotesets "0y
(858RRRRAIIIK I
0000003030 200202020 303030, 20
0503030300050%030 % 0200202030 000
0505000203030 30%0 %0, Yadededededededede
050303030302020%0 02030, Valededededede? %o
0595030303020%0%0% 203020, Yade303020%0%0, %9
0503000305050%030%0, %0%02030, J0302050303030 0%
0e050305000%0%0%030%0, ¢ a%030,02050%0%03030%¢8 %
0505000305000%0%0%030%0, 20303030te%et0%0 303000, 26
R303000305050%0 3030300000, 43030205030 30303020%020,03¢
0g0e0003000000%0 30303000, 030203020%20302030 %20 ¥0%
0,0%030300050%03030303020%0%0, 205050203 Yedetete? 2032 &
(SCERIIIERRRIIIECRIII K IR IR I
BOL0ee Jetetedededetetedededevedetetededodo sdetededotetede
0% $%0%0%0%" 90%0%%0%° ' #%¢%0%%

o %
1026202920 %%2 %% %%
02020 %% %% %%%
%%° %% %"%%

of

the
House
and
Means

Committee
introduced
how

the

new

s&l

Influential
members
Ways
legislation
that
would
restrict
bailout
agency
can

raise
capital
creating
another
potential
obstacle
S

sale

of

sick

1621 min
111 min
35 min

15 min

(no search error)

Unsupervised Tagging

W Unsupervised Tagging?

= AKA part-of-speech induction
= Task:

" Raw sentences in

* Tagged sentences out
= Obvious thing to do:
= Start with a (mostly) uniform HMM

" Run EM
" |nspect results

W EM for HMMs: Process

= Alternate between recomputing distributions over hidden variables (the
tags) and reestimating parameters

= Crucial step: we want to tally up how many (fractional) counts of each
kind of transition and emission we have under current params:

count(w,s) = Y P(t; = s|lw)

W =W

count(s — §') = ZP(tz’—l = s,t; = s'|w)
)

= Same quantities we needed to train a CRF!

p 3 Merialdo: Setup

= Some (discouraging) experiments [Merialdo 94]

= Setup:
®= You know the set of allowable tags for each word

= Fix k training examples to their true labels
= Learn P(w|t) on these examples
= Learn P(t|t_,,t,) on these examples

= On n examples, re-estimate with EM

= Note: we know allowed tags but not frequencies

% EM for HMMs: Quantities

= Total path values (correspond to probabilities here):

a;(s)

P(wo .. Wy, Si)
> P(sglsi—1)P(wj|si)o—1(si—1)

Si—1

P(w; + 1...wnpls;)

> P(sjt1]si)P(wjt1]8i+1)8i+1(si+1)
Si+1

Bi(s)

W& The State Lattice / Trellis

ONONONMONONO
ONONOMONONO
ONONONMONONO
ONONONMONONO
ONONONMONONO
ONONONMONONO

START Fed raises interest rates END

W EM for HMMs: Process

= From these quantities, can compute expected transitions:

_ Si0i(s)P(|5) P(wils)Biy1(s')

count(s — s') B(w)

" And emissions:

Zi:wi=w O‘i(s)ﬁi—l—l (s)

count(w, s) = B(w)

¥

Merialdo: Results

Number of tagged sentences used for the initial model

0 100 2000 5000 10000 20000 all

Iter Correct tags (% words) after ML on 1M words
0 770 900 954 962 96.6 96.9 97.0
1 805 926 958 963 96.6 96.7 96.8
2 818 930 957 961 96.3 96.4 96.4
3 830 931 954 958 96.1 96.2 96.2
4 840 930 952 955 958 96.0 9.0
5 848 929 951 954 956 95.8 95.8
6 853 928 949 952 955 95.6 95.7
7 858 928 947 951 95.3 95.5 95.5
8 861 927 946 950 95.2 95.4 95.4
9 863 926 945 949 951 953 95.3
10 B866 926 944 948 950 95.2 95.2

p 3 Projection-Based A*

7T SYNTACTIC . 7T SEMANTIC

ﬁ P:fell
NP:payrolls /E:in
VA VN

S Factory payrolls fell in Sept. fell
/\ VP /\ fell
NP PP payrolls /\in
\ -\ 7\ 7\

Factory payrolls fell in Sept. Factory payrolls fell in Sept.

E& A* Speedup

50 B Combined Phase
40 m Dependency Phase
B PCFG Phase

Time (sec)
w
o

RN
o O

0 5 10 15 20 25 30 35 40
Length

= Total time dominated by calculation of A* tables in each
projection... O(n3)

W& Breaking Up the Symbols

= We can relax independence assumptions by
encoding dependencies into the PCFG symbols:

Parent annotation Marking

[Johnson 98] possessive NPs
STROOT NP

/’\ /N

NP’S VP’'S . NP-POS I NN
| PN | N

PRP VBD ADVP'VP . NNP POS new ad
VAN N

He was right Fidelity S

= \What are the most useful “features” to encode?

p 3 Other Tag Splits

F1 Size

UNARY-DT: mark demonstratives as DTAU (“the 804 |8.1K
X" vs. “those”)

UNARY-RB: mark phrasal adverbs as RBAU 80.5 [8.1K
(“quickly” vs. “very”)

TAG-PA: mark tags with non-canonical parents 81.2 |8.5K
(“not” is an RBAVP)

SPLIT-AUX: mark auxiliary verbs with —AUX [cf. 81.6 |9.0K
Charniak 97]

SPLIT-CC: separate “but” and “&” from other 81.7 [9.1K

conjunctions
SPLIT-%: “%” gets its own tag. 81.8 |9.3K

