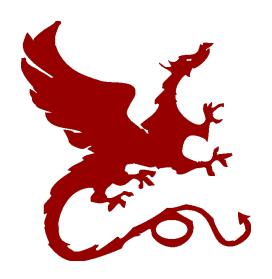
Algorithms for NLP



Tagging / Parsing

Taylor Berg-Kirkpatrick – CMU

Slides: Dan Klein – UC Berkeley

So How Well Does It Work?

- Choose the most common tag
 - 90.3% with a bad unknown word model
 - 93.7% with a good one
- TnT (Brants, 2000):
 - A carefully smoothed trigram tagger
 - Suffix trees for emissions
 - 96.7% on WSJ text (SOTA is 97+%)
- Noise in the data
 - Many errors in the training and test corpora

DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted ...

 Probably about 2% guaranteed error from noise (on this data) JJ JJ NN
chief executive officer
NN JJ NN
chief executive officer
JJ NN NN
chief executive officer
NN NN NN
chief executive officer

Overview: Accuracies

Roadmap of (known / unknown) accuracies:

■ Most freq tag: ~90% / ~50%

Trigram HMM:

~95% (~55%

■ TnT (HMM++):

96.2% / 86.0%

Most errors on unknown words

■ Maxent P(t|w):

93.7% / 82.6%

MEMM tagger:

96.9% / 86.9%

State-of-the-art:

97+% / 89+%

Upper bound:

~98%

Common Errors

Common errors [from Toutanova & Manning 00]

	JJ	NN	NNP	NNPS	RB	RP	IN	VB	VBD	VBN	VBP	Total
JJ	0	177	56	0	61	2	5	10	15	108	0	488
NN	244	0	103	0	12	1	1	29	5	6	19	525
NNP	107	106	0	132	5	0	7	5	1	2	0	427
NNPS	1	0	110	0	0	0	0	0	0	0	0	142
RB	72	21	7	0	0	16	138	1	0	0	0	295
RP	0	0	0	0	39	0	65	0	0	0	0	104
IN	11	0	1	0	169	103	0	1	0	0	0	323
VB	17	64	9	0	2	0	1	0	4	7	85	189
VBD	10	5	3	0	Ø	0	0	3	0	143	2	166
VBN	101	3	3	0	q	0	0	3	108	Q	1	221
VBP	5	34	3	1	1	0	2	49	6	3	0	104
Total	626	536	348	144	317	122	279	102	140	269	108	3651

NN/JJ NN official knowledge

VBD RP/IN DT NN made up the story

RB VBD/VBN NNS recently sold shares

Richer Features

Better Features

Can do surprisingly well just looking at a word by itself:

• Word the: the ightarrow DT

■ Lowercased word Importantly: importantly \rightarrow RB

• Prefixes unfathomable: un- ightarrow JJ

• Suffixes Surprisingly: $-ly \rightarrow RB$

■ Capitalization Meridian: CAP \rightarrow NNP

■ Word shapes 35-year: d-x \rightarrow JJ

Then build a maxent (or whatever) model to predict tag

Maxent P(t|w): 93.7% / 82.6%

Why Local Context is Useful

Lots of rich local information!

```
RB
PRP VBD IN RB IN PRP VBD .
They left as soon as he arrived .
```

We could fix this with a feature that looked at the next word

```
NNP NNS VBD VBN .
Intrinsic flaws remained undetected
```

- We could fix this by linking capitalized words to their lowercase versions
- Solution: discriminative sequence models (MEMMs, CRFs)
- Reality check:
 - Taggers are already pretty good on newswire text...
 - What the world needs is taggers that work on other text!

Sequence-Free Tagging?

- What about looking at a word and its environment, but no sequence information?
- w_2 w_3 w_4

- Add in previous / next word
- Previous / next word shapes
- Crude entity detection
- Phrasal verb in sentence?
- Conjunctions of these things

the __ X __ X

__ (Inc. | Co.)
put

- All features except sequence: 96.6% / 86.8%
- Uses lots of features: > 200K

Named Entity Recognition

- Other sequence tasks use similar models
- Example: name entity recognition (NER)

PER PER O O O O O O ORG O O O LOC LOC O

Tim Boon has signed a contract extension with Leicestershire which will keep him at Grace Road.

Local Context

	Prev	Cur	Next
State	???	LOC	???
Word	at	Grace	Road
Tag	IN	NNP	NNP
Sig	Х	Xx	Xx

MEMM Taggers

 Idea: left-to-right local decisions, condition on previous tags and also entire input

$$P(\mathbf{t}|\mathbf{w}) = \prod_{i} P_{\mathsf{ME}}(t_i|\mathbf{w}, t_{i-1}, t_{i-2})$$

- Train up P(t_i|w,t_{i-1},t_{i-2}) as a normal maxent model, then use to score sequences
- This is referred to as an MEMM tagger [Ratnaparkhi 96]
- Beam search effective! (Why?)
- What about beam size 1?
- Subtle issues with local normalization (cf. Lafferty et al 01)

NER Features

Because of regularization term, the more common prefixes have larger weights even though entire-word features are more specific.

Local Context

	Prev	Cur	Next
State	Other	LOC	???
Word	at	Grace	Road
Tag	IN	NNP	NNP
Sig	x	Xx	Xx

Feature Weights

Feature Type	Feature	PERS	LOC
Previous word	at	-0.73	0.94
Current word	Grace	0.03	0.00
First char of word	▶ G	0.45	-0.04
Current POS tag	NNP	0.47	0.45
Prev and cur tags	IN NNP	-0.10	0.14
Previous state	Other	-0.70	-0.92
Current signature	Xx	0.80	0.46
Prev state, cur sig	O-Xx	0.68	0.37
Prev-cur-next sig	x-Xx-Xx	-0.69	0.37
P. state - p-cur sig	O-x-Xx	-0.20	0.82
Total:		-0.58	2.68

Decoding

- Decoding MEMM taggers:
 - Just like decoding HMMs, different local scores
 - Viterbi, beam search, posterior decoding
- Viterbi algorithm (HMMs):

$$\delta_i(s) = \arg\max_{s'} P(s|s')P(w_{i-1}|s')\delta_{i-1}(s')$$

Viterbi algorithm (MEMMs):

$$\delta_i(s) = \arg\max_{s'} P(s|s', \mathbf{w}) \delta_{i-1}(s')$$

General:

$$\delta_i(s) = \arg\max_{s'} \phi_i(s', s) \delta_{i-1}(s')$$

Conditional Random Fields (and Friends)

Maximum Entropy II

Remember: maximum entropy objective

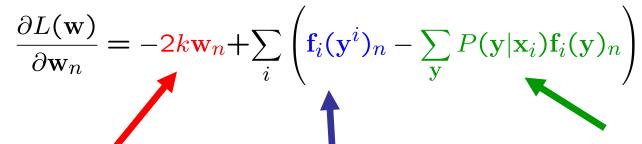
$$L(\mathbf{w}) = \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}^{i}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right)$$

- Problem: lots of features allow perfect fit to training set
- Regularization (compare to smoothing)

$$\max_{\mathbf{w}} \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}^{i}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right) - k ||\mathbf{w}||^{2}$$

Derivative for Maximum Entropy

$$L(\mathbf{w}) = -k||\mathbf{w}||^2 + \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}^i) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y})) \right)$$



Big weights are bad

Expected count of feature n in predicted candidates

Total count of feature n in correct candidates

Perceptron Review

Perceptron

Linear model:

$$score(\mathbf{t}|\mathbf{w}) = \lambda^{\top} f(\mathbf{t}, \mathbf{w})$$

... that decompose along the sequence

$$= \lambda^{\top} \sum_{i} f(t_{i}, t_{i-1}, \mathbf{w}, i)$$

... allow us to predict with the Viterbi algorithm

$$t^* = \underset{t}{\operatorname{arg max}} \operatorname{score}(t|\mathbf{w})$$

 ... which means we can train with the perceptron algorithm (or related updates, like MIRA)

Conditional Random Fields

- Make a maxent model over entire taggings
 - MEMM

$$P(\mathbf{t}|\mathbf{w}) = \prod_{i} \frac{1}{Z(i)} \exp\left(\lambda^{\top} f(t_i, t_{i-1}, \mathbf{w}, i)\right)$$

CRF

$$P(\mathbf{t}|\mathbf{w}) = \frac{1}{Z(\mathbf{w})} \exp\left(\lambda^{\top} f(\mathbf{t}, \mathbf{w})\right)$$

$$= \frac{1}{Z(\mathbf{w})} \exp\left(\lambda^{\top} \sum_{i} f(t_{i}, t_{i-1}, \mathbf{w}, i)\right)$$

$$= \frac{1}{Z(\mathbf{w})} \prod_{i} \phi_{i}(t_{i}, t_{i-1})$$

CRFs

Like any maxent model, derivative is:

$$\frac{\partial L(\lambda)}{\partial \lambda} = \sum_{k} \left(\mathbf{f}_{k}(\mathbf{t}^{k}) - \sum_{\mathbf{t}} P(\mathbf{t}|\mathbf{w}_{k}) \mathbf{f}_{k}(\mathbf{t}) \right)$$

- So all we need is to be able to compute the expectation of each feature (for example the number of times the label pair *DT-NN* occurs, or the number of times *NN-interest* occurs) under the model distribution
- Critical quantity: counts of posterior marginals:

$$count(w,s) = \sum_{i:w_i=w} P(t_i = s|\mathbf{w})$$

$$count(s \to s') = \sum_{i} P(t_{i-1} = s, t_i = s'|\mathbf{w})$$

Computing Posterior Marginals

How many (expected) times is word w tagged with s?

$$count(w,s) = \sum_{i:w_i=w} P(t_i = s|\mathbf{w})$$

How to compute that marginal?

$$\bigcirc$$

$$\bigcirc$$

(N)

N

 \mathbb{N}

 (\vee)

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

(1)

(D)

(J)

 \bigcirc

 \bigcirc

 \bigcirc

D

(D)

(D)

(D)

(\$)

(\$)

(\$)

(\$)

(\$)

(\$)

END

START

Fed

raises

interest

rates

 $\alpha_i(s) = \sum_{s'} \phi_i(s', s) \alpha_{i-1}(s')$

$$\beta_i(s) = \sum_{s'} \phi_{i+1}(s, s') \beta_{i+1}(s')$$

$$P(t_i = s | \mathbf{w}) = \frac{\alpha_i(s)\beta_i(s)}{\alpha_N(\mathsf{END})}$$

Global Discriminative Taggers

- Newer, higher-powered discriminative sequence models
 - CRFs (also perceptrons, M3Ns)
 - Do not decompose training into independent local regions
 - Can be deathly slow to train require repeated inference on training set
- Differences tend not to be too important for POS tagging
- Differences more substantial on other sequence tasks
- However: one issue worth knowing about in local models
 - "Label bias" and other explaining away effects
 - MEMM taggers' local scores can be near one without having both good "transitions" and "emissions"
 - This means that often evidence doesn't flow properly
 - Why isn't this a big deal for POS tagging?
 - Also: in decoding, condition on predicted, not gold, histories

Transformation-Based Learning

- [Brill 95] presents a *transformation-based* tagger
 - Label the training set with most frequent tags

```
DT MD VBD VBD .
The can was rusted .
```

Add transformation rules which reduce training mistakes

```
    MD → NN : DT ___
    VBD → VBN : VBD ___ .
```

- Stop when no transformations do sufficient good
- Does this remind anyone of anything?
- Probably the most widely used tagger (esp. outside NLP)
- ... but definitely not the most accurate: 96.6% / 82.0 %

Learned Transformations

What gets learned? [from Brill 95]

	Chang	ge Tag	
#	From	То	Condition
1	NN	VB	Previous tag is TO
2	VBP	VB	One of the previous three tags is MD
3	NN	VB	One of the previous two tags is MD
4	VB	NN	One of the previous two tags is DT
5	VBD	VBN	One of the previous three tags is VBZ
6	VBN	VBD	Previous tag is PRP
7	VBN	VBD	Previous tag is NNP
8	VBD	VBN	Previous tag is VBD
9	VBP	VB	Previous tag is TO
10	POS	VBZ	Previous tag is PRP
11	VB	VBP	Previous tag is NNS
12	VBD	VBN	One of previous three tags is VBP
13	IN	WDT	One of next two tags is VB
14	VBD	VBN	One of previous two tags is VB
15	VB	VBP	Previous tag is PRP
16	IN	WDT	Next tag is VBZ
17	IN	DT	Next tag is NN
18	JJ	NNP	Next tag is NNP
19	IN	WDT	Next tag is VBD
20	JJR	RBR	Next tag is JJ

	Change Tag		
#	From	То	Condition
1	NN	NNS	Has suffix -s
2	NN	CD	Has character .
3	NN	JJ	Has character -
4	NN	VBN	Has suffix -ed
5	NN	VBG	Has suffix -ing
6	??	RB	Has suffix -ly
7	??	JJ	Adding suffix -ly results in a word.
8	NN	$^{\mathrm{CD}}$	The word \$ can appear to the left.
9	NN	JJ	Has suffix -al
10	NN	VB	The word would can appear to the left.
11	NN	CD	Has character 0
12	NN	JJ	The word be can appear to the left.
13	NNS	JJ	Has suffix -us
14	NNS	VBZ	The word it can appear to the left.
15	NN	JJ	Has suffix -ble
16	NN	JJ	Has suffix -i c
17	NN	CD	Has character 1
18	NNS	NN	Has suffix -ss
19	??	JJ	Deleting the prefix un- results in a word
20	NN	JJ	Has suffix -iv e

EngCG Tagger

English constraint grammar tagger

- [Tapanainen and Voutilainen 94]
- Something else you should know about
- Hand-written and knowledge driven
- "Don't guess if you know" (general point about modeling more structure!)
- Tag set doesn't make all of the hard distinctions as the standard tag set (e.g. JJ/NN)
- They get stellar accuracies: 99% on their tag set
- Linguistic representation matters...
- ... but it's easier to win when you make up the rules

```
walk

walk <SV> <SVO> V SUBJUNCTIVE VFIN

walk <SV> <SVO> V IMP VFIN

walk <SV> <SVO> V INF

walk <SV> <SVO> V PRES -SG3 VFIN

walk N NOM SG
```

```
walk V-SUBJUNCTIVE V-IMP V-INF
V-PRES-BASE N-NOM-SG
```


Domain Effects

- Accuracies degrade outside of domain
 - Up to triple error rate
 - Usually make the most errors on the things you care about in the domain (e.g. protein names)

Open questions

- How to effectively exploit unlabeled data from a new domain (what could we gain?)
- How to best incorporate domain lexica in a principled way (e.g. UMLS specialist lexicon, ontologies)

Unsupervised Tagging

Unsupervised Tagging?

- AKA part-of-speech induction
- Task:
 - Raw sentences in
 - Tagged sentences out
- Obvious thing to do:
 - Start with a (mostly) uniform HMM
 - Run EM
 - Inspect results

EM for HMMs: Process

- Alternate between recomputing distributions over hidden variables (the tags) and reestimating parameters
- Crucial step: we want to tally up how many (fractional) counts of each kind of transition and emission we have under current params:

$$count(w,s) = \sum_{i:w_i=w} P(t_i = s|\mathbf{w})$$

$$count(s \to s') = \sum_{i} P(t_{i-1} = s, t_i = s'|\mathbf{w})$$

Same quantities we needed to train a CRF!

EM for HMMs: Quantities

Total path values (correspond to probabilities here):

$$\alpha_i(s) = P(w_0 \dots w_i, s_i)$$

= $\sum_{s_{i-1}} P(s_i|s_{i-1}) P(w_i|s_i) \alpha_{i-1}(s_{i-1})$

$$\beta_i(s) = P(w_i + 1 \dots w_n | s_i)$$

= $\sum_{s_{i+1}} P(s_{i+1} | s_i) P(w_{i+1} | s_{i+1}) \beta_{i+1}(s_{i+1})$

The State Lattice / Trellis

\wedge	\wedge	\wedge	\(\)	\wedge	\wedge
N	N	N	N	N	N
\bigcirc	V	V	V	\bigcirc	\bigcirc
J	J	J	J	J	J
D	D	D	D	D	D
\$	\$	\$	\$	\$	\$
START	Fed	raises	interest	rates	END

EM for HMMs: Process

From these quantities, can compute expected transitions:

$$count(s \to s') = \frac{\sum_{i} \alpha_i(s) P(s'|s) P(w_i|s) \beta_{i+1}(s')}{P(\mathbf{w})}$$

And emissions:

$$count(w,s) = \frac{\sum_{i:w_i=w} \alpha_i(s)\beta_{i+1}(s)}{P(\mathbf{w})}$$

Merialdo: Setup

Some (discouraging) experiments [Merialdo 94]

Setup:

- You know the set of allowable tags for each word
- Fix k training examples to their true labels
 - Learn P(w|t) on these examples
 - Learn P(t|t₋₁,t₋₂) on these examples
- On n examples, re-estimate with EM
- Note: we know allowed tags but not frequencies

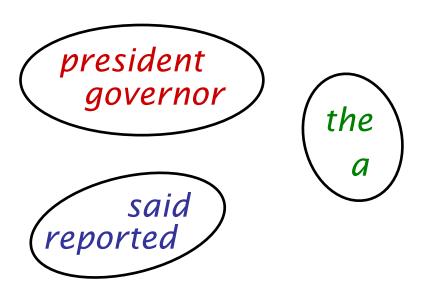
Merialdo: Results

Nι	ımber o	of tagge	ed sente	nces use	ed for the	e initial n	nodel
	0	100	2000	5000	10000	20000	all
Iter	Co	rrect tag	gs (% w	ords) af	ter ML c	n 1M wo	rds
0	77.0	90.0	95.4	96.2	96.6	96.9	97.0
1	80.5	92.6	95.8	96.3	96.6	96.7	96.8
2	81.8	93.0	95. <i>7</i>	96.1	96.3	96.4	96.4
3	83.0	93.1	95.4	95.8	96.1	96.2	96.2
4	84.0	93.0	95.2	95.5	95.8	96.0	96.0
5	84.8	92.9	95.1	95.4	95.6	95.8	95.8
6	85.3	92.8	94.9	95.2	95.5	95.6	95.7
7	85.8	92.8	94.7	95.1	95.3	95.5	95.5
8	86.1	92.7	94.6	95.0	95.2	95.4	95.4
9	86.3	92.6	94.5	94.9	95.1	95.3	95.3
10	86.6	92.6	94.4	94.8	95.0	95.2	95.2

Distributional Clustering

the president said that the downturn was over *

president	the of
president	the said ←
governor	the of
governor	the appointed
said	sources •
said	president that
reported	sources •



[Finch and Chater 92, Shuetze 93, many others]

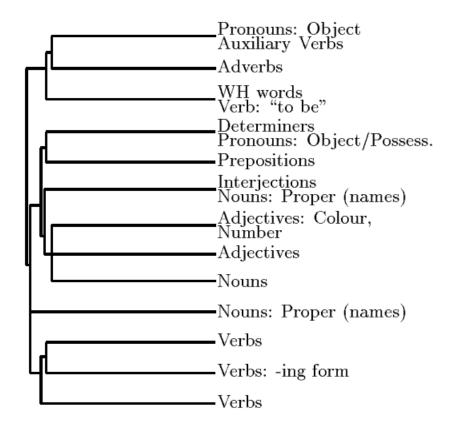
Distributional Clustering

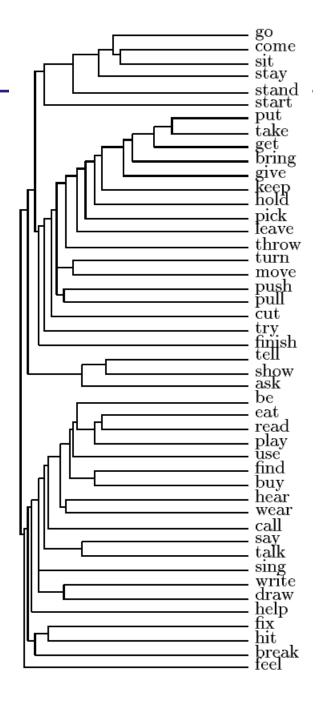
- Three main variants on the same idea:
 - Pairwise similarities and heuristic clustering
 - E.g. [Finch and Chater 92]
 - Produces dendrograms
 - Vector space methods
 - E.g. [Shuetze 93]
 - Models of ambiguity
 - Probabilistic methods
 - Various formulations, e.g. [Lee and Pereira 99]

Nearest Neighbors

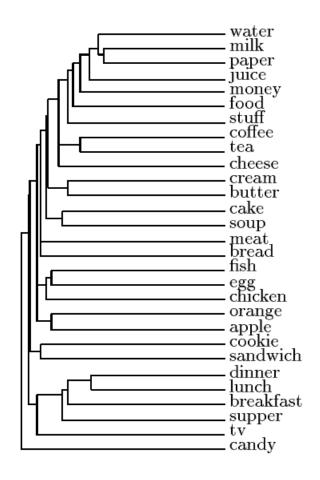
word	nearest neighbors
accompanied	submitted banned financed developed authorized headed canceled awarded barred
almost	virtually merely formally fully quite officially just nearly only less
causing	reflecting forcing providing creating producing becoming carrying particularly
classes	elections courses payments losses computers performances violations levels pictures
directors	professionals investigations materials competitors agreements papers transactions
goal	mood roof eye image tool song pool scene gap voice
japanese	chinese iraqi american western arab foreign european federal soviet indian
represent	reveal attend deliver reflect choose contain impose manage establish retain
think	believe wish know realize wonder assume feel say mean bet
york	angeles francisco sox rouge kong diego zone vegas inning layer
on	through in at over into with from for by across
must	might would could cannot will should can may does helps
they	we you i he she nobody who it everybody there

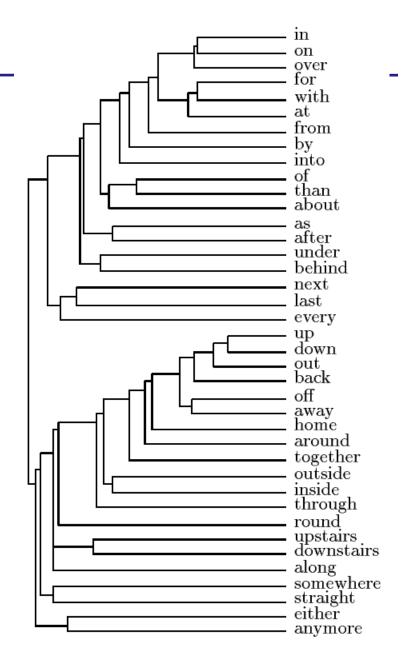
Dendrograms





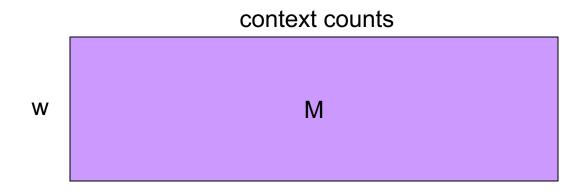
Dendrograms



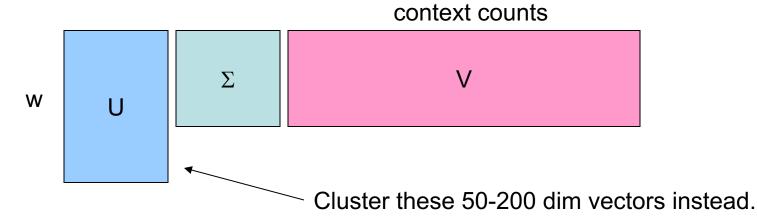


Vector Space Version

[Shuetze 93] clusters words as points in Rⁿ

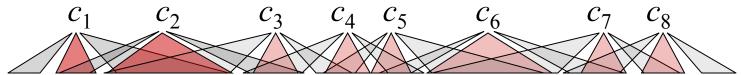


Vectors too sparse, use SVD to reduce

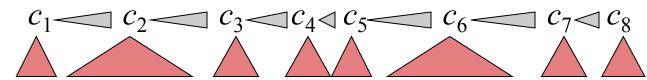


A Probabilistic Version?

$$P(S,C) = \prod_{i} P(c_{i})P(w_{i} | c_{i})P(w_{i-1}, w_{i+1} | c_{i})$$



♦ the president said that the downturn was over ◆



♦ the president said that the downturn was over ◆

What Else?

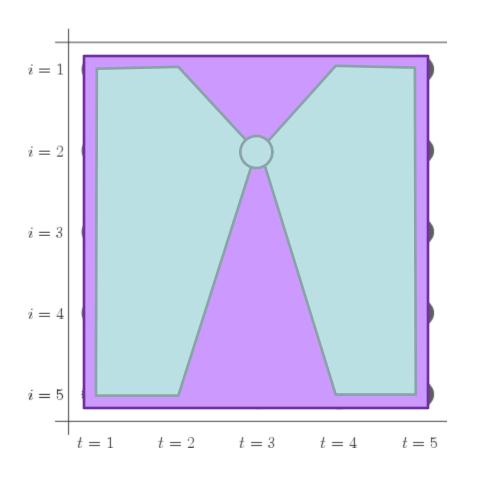
Various newer ideas:

- Context distributional clustering [Clark 00]
- Morphology-driven models [Clark 03]
- Contrastive estimation [Smith and Eisner 05]
- Feature-rich induction [Haghighi and Klein 06]

Also:

- What about ambiguous words?
- Using wider context signatures has been used for learning synonyms (what's wrong with this approach?)
- Can extend these ideas for grammar induction (later)

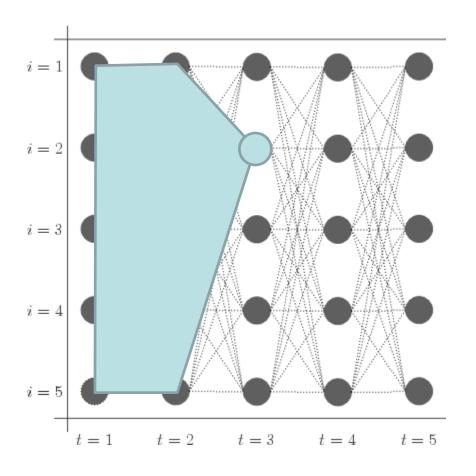
Computing Marginals



$$P(s_t|x) = \frac{P(s_t, x)}{P(x)}$$

= sum of all paths through s at t sum of all paths

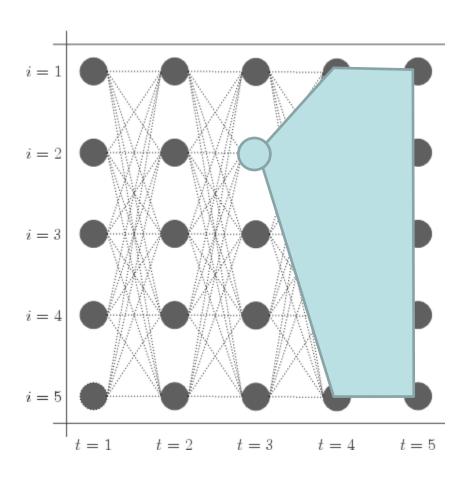
Forward Scores



$$v_t(s_t) = \max_{s_{t-1}} v_{t-1}(s_{t-1})\phi_t(s_{t-1}, s_t)$$

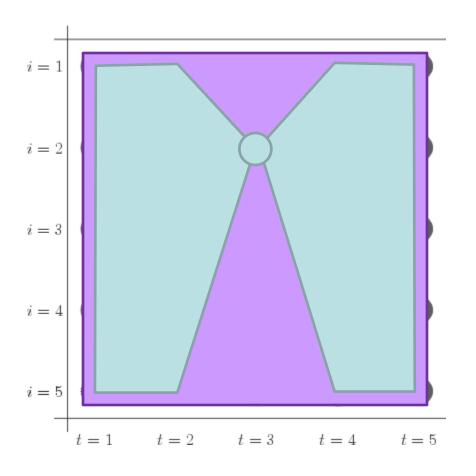
$$\alpha_t(s_t) = \sum_{s_{t-1}} \alpha_{t-1}(s_{t-1}) \phi_t(s_{t-1}, s_t)$$

Backward Scores



$$\beta_t(s_t) = \sum_{s_{t+1}} \beta_{t+1}(s_{t+1}) \phi_t(s_t, s_{t+1})$$

Total Scores



$$P(s_t, x) = \alpha_t(s_t)\beta_t(s_t)$$

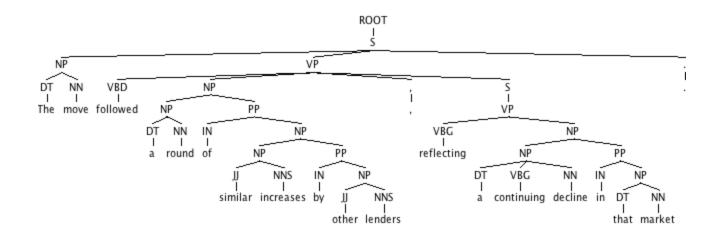
$$P(x) = \sum_{s_t} \alpha_t(s_t)\beta_t(s_t)$$

$$= \alpha_T(\text{stop})$$

$$= \beta_0(\text{start})$$

Syntax

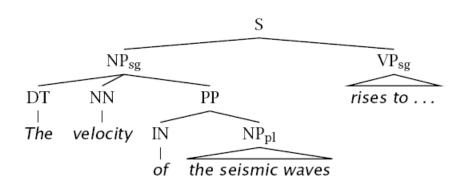
Parse Trees



The move followed a round of similar increases by other lenders, reflecting a continuing decline in that market

Phrase Structure Parsing

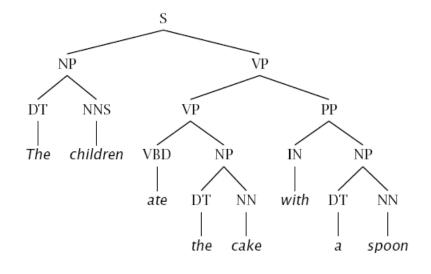
- Phrase structure parsing organizes syntax into constituents or brackets
- In general, this involves nested trees
- Linguists can, and do, argue about details
- Lots of ambiguity
- Not the only kind of syntax...



new art critics write reviews with computers

Constituency Tests

- How do we know what nodes go in the tree?
- Classic constituency tests:
 - Substitution by proform
 - Question answers
 - Semantic gounds
 - Coherence
 - Reference
 - Idioms
 - Dislocation
 - Conjunction

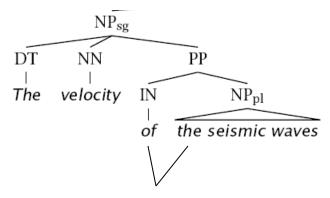


Cross-linguistic arguments, too

Conflicting Tests

Constituency isn't always clear

- Units of transfer:
 - think about ~ penser à
 - talk about ~ hablar de
- Phonological reduction:
 - I will go \rightarrow I'll go
 - I want to go → I wanna go
 - a le centre → au centre



La vélocité des ondes sismiques

- Coordination
 - He went to and came from the store.

Classical NLP: Parsing

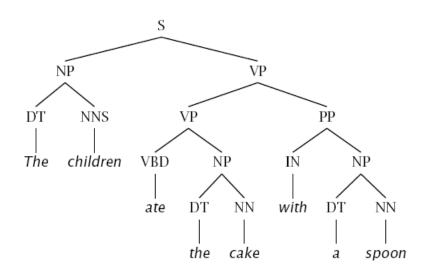
Write symbolic or logical rules:

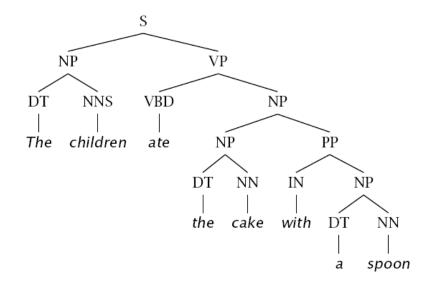
Grammar (CFG)		Lexicon
$ROOT \to S$	$NP \rightarrow NP PP$	$NN \rightarrow interest$
$S \rightarrow NP VP$	$VP \rightarrow VBP NP$	$NNS \to raises$
$NP \to DT \; NN$	$VP \rightarrow VBP NP PP$	$VBP \to interest$
$NP \to NN \; NNS$	$PP o IN \; NP$	$VBZ \to raises$
		•••

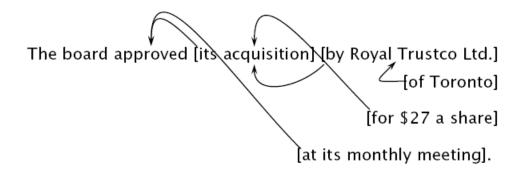
- Use deduction systems to prove parses from words
 - Minimal grammar on "Fed raises" sentence: 36 parses
 - Simple 10-rule grammar: 592 parses
 - Real-size grammar: many millions of parses
- This scaled very badly, didn't yield broad-coverage tools

Ambiguities

Ambiguities: PP Attachment







Attachments

I cleaned the dishes from dinner

I cleaned the dishes with detergent

I cleaned the dishes in my pajamas

I cleaned the dishes in the sink

Syntactic Ambiguities I

- Prepositional phrases:
 They cooked the beans in the pot on the stove with handles.
- Particle vs. preposition:
 The puppy tore up the staircase.
- Complement structures The tourists objected to the guide that they couldn't hear. She knows you like the back of her hand.
- Gerund vs. participial adjective
 Visiting relatives can be boring.
 Changing schedules frequently confused passengers.

Syntactic Ambiguities II

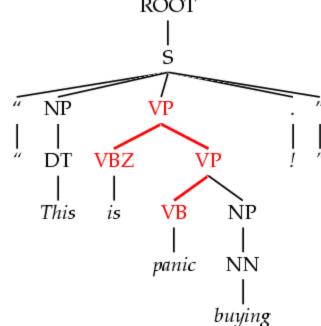
- Modifier scope within NPs impractical design requirements plastic cup holder
- Multiple gap constructions
 The chicken is ready to eat.
 The contractors are rich enough to sue.
- Coordination scope:
 Small rats and mice can squeeze into holes or cracks in the wall.

Dark Ambiguities

 Dark ambiguities: most analyses are shockingly bad (meaning, they don't have an interpretation you can get your mind around)

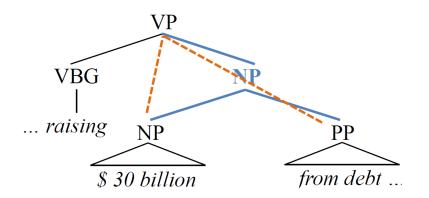
This analysis corresponds to the correct parse of

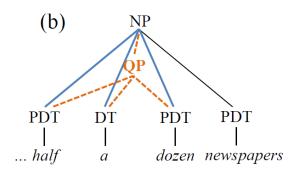
"This will panic buyers!"

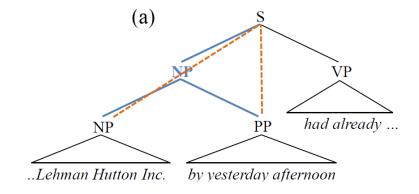


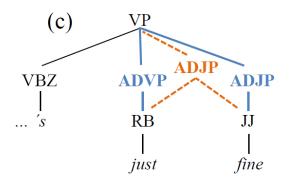
- Unknown words and new usages
- Solution: We need mechanisms to focus attention on the best ones, probabilistic techniques do this

Ambiguities as Trees









PCFGs

Probabilistic Context-Free Grammars

A context-free grammar is a tuple <N, T, S, R>

- N: the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
- T: the set of terminals (the words)
- *S*: the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
- R: the set of rules
 - Of the form $X \rightarrow Y_1 Y_2 \dots Y_k$, with $X, Y_i \in N$
 - Examples: $S \rightarrow NP VP$, $VP \rightarrow VP CC VP$
 - Also called rewrites, productions, or local trees

A PCFG adds:

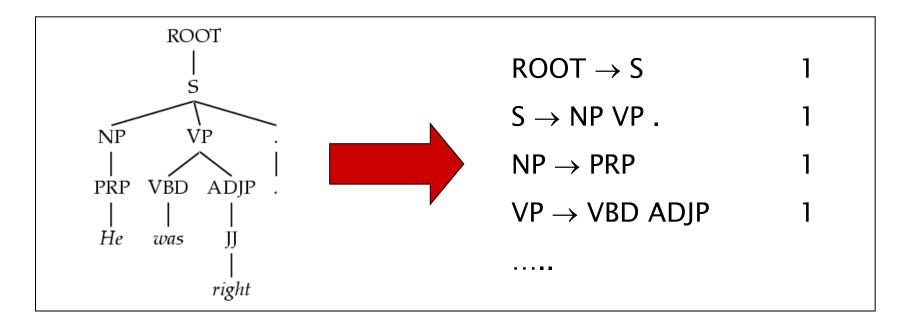
• A top-down production probability per rule $P(Y_1 Y_2 ... Y_k \mid X)$

Treebank Sentences

```
( (S (NP-SBJ The move)
     (VP followed
         (NP (NP a round)
             (PP of
                  (NP (NP similar increases)
                      (PP by
                          (NP other lenders))
                      (PP against
                          (NP Arizona real estate loans)))))
         (S-ADV (NP-SBJ *)
                (VP reflecting
                     (NP (NP a continuing decline)
                         (PP-LOC in
                                 (NP that market))))))
     .))
```


Treebank Grammars

- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn't work well):

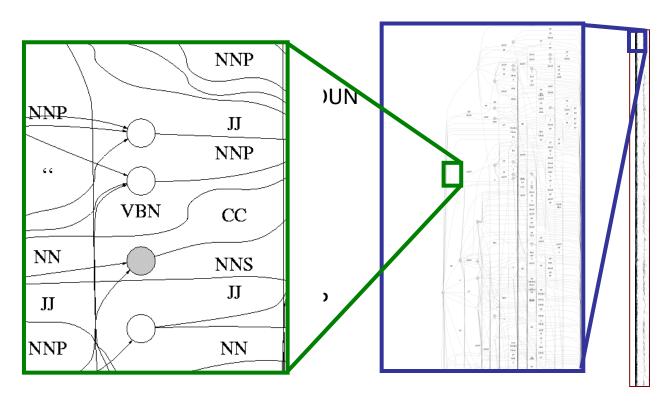


- Better results by enriching the grammar (e.g., lexicalization).
- Can also get state-of-the-art parsers without lexicalization.

Treebank Grammar Scale

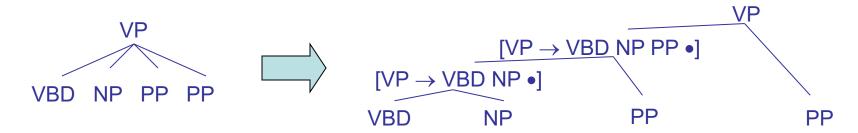
- Treebank grammars can be enormous
 - As FSAs, the raw grammar has ~10K states, excluding the lexicon
 - Better parsers usually make the grammars larger, not smaller

NP



Chomsky Normal Form

- Chomsky normal form:
 - All rules of the form $X \rightarrow Y Z$ or $X \rightarrow w$
 - In principle, this is no limitation on the space of (P)CFGs
 - N-ary rules introduce new non-terminals



- Unaries / empties are "promoted"
- In practice it's kind of a pain:
 - Reconstructing n-aries is easy
 - Reconstructing unaries is trickier
 - The straightforward transformations don't preserve tree scores
- Makes parsing algorithms simpler!

CKY Parsing

A Recursive Parser

```
bestScore(X,i,j,s)
  if (j = i+1)
    return tagScore(X,s[i])
  else
    return max score(X->YZ) *
        bestScore(Y,i,k) *
        bestScore(Z,k,j)
```

- Will this parser work?
- Why or why not?
- Memory requirements?

A Memoized Parser

One small change:

```
bestScore(X,i,j,s)
  if (scores[X][i][j] == null)
    if (j = i+1)
        score = tagScore(X,s[i])
    else
        score = max score(X->YZ) *
              bestScore(Y,i,k) *
              bestScore(Z,k,j)
        scores[X][i][j] = score
  return scores[X][i][j]
```


A Bottom-Up Parser (CKY)

Can also organize things bottom-up

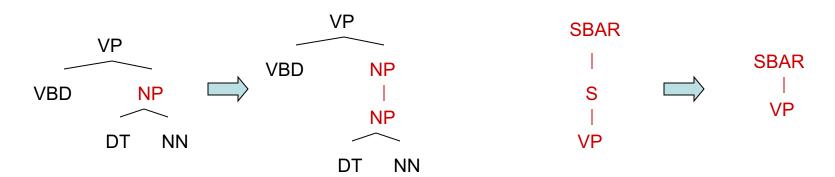
```
bestScore(s)
  for (i : [0,n-1])
     for (X : tags[s[i]])
       score[X][i][i+1] =
          tagScore(X,s[i])
  for (diff : [2,n])
                                               k
     for (i : [0,n-diff])
       j = i + diff
       for (X->YZ : rule)
         for (k : [i+1, j-1])
           score[X][i][j] = max score[X][i][j],
                                 score(X->YZ) *
                                 score[Y][i][k] *
                                 score[Z][k][j]
```

Unary Rules

• Unary rules?

CNF + Unary Closure

- We need unaries to be non-cyclic
 - Can address by pre-calculating the unary closure
 - Rather than having zero or more unaries, always have exactly one



- Alternate unary and binary layers
- Reconstruct unary chains afterwards

Alternating Layers

```
bestScoreB(X,i,j,s)
      return max max score (X->YZ) *
                       bestScoreU(Y,i,k) *
                       bestScoreU(Z,k,j)
bestScoreU(X,i,j,s)
   if (j = i+1)
       return tagScore(X,s[i])
  else
       return max max score (X->Y) *
                       bestScoreB(Y,i,j)
```

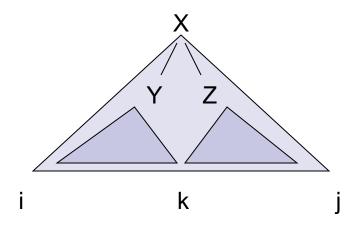
Analysis

Memory

- How much memory does this require?
 - Have to store the score cache
 - Cache size: |symbols|*n² doubles
 - For the plain treebank grammar:
 - X ~ 20K, n = 40, double ~ 8 bytes = ~ 256MB
 - Big, but workable.
- Pruning: Beams
 - score[X][i][j] can get too large (when?)
 - Can keep beams (truncated maps score[i][j]) which only store the best few scores for the span [i,j]
- Pruning: Coarse-to-Fine
 - Use a smaller grammar to rule out most X[i,j]
 - Much more on this later...

Time: Theory

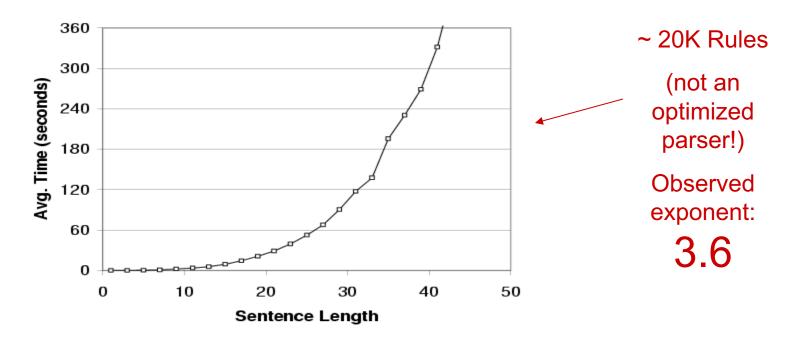
- How much time will it take to parse?
 - For each diff (<= n)</p>
 - For each i (<= n)</p>
 - For each rule $X \rightarrow Y Z$
 - For each split point kDo constant work



- Total time: |rules|*n³
- Something like 5 sec for an unoptimized parse of a 20-word sentence

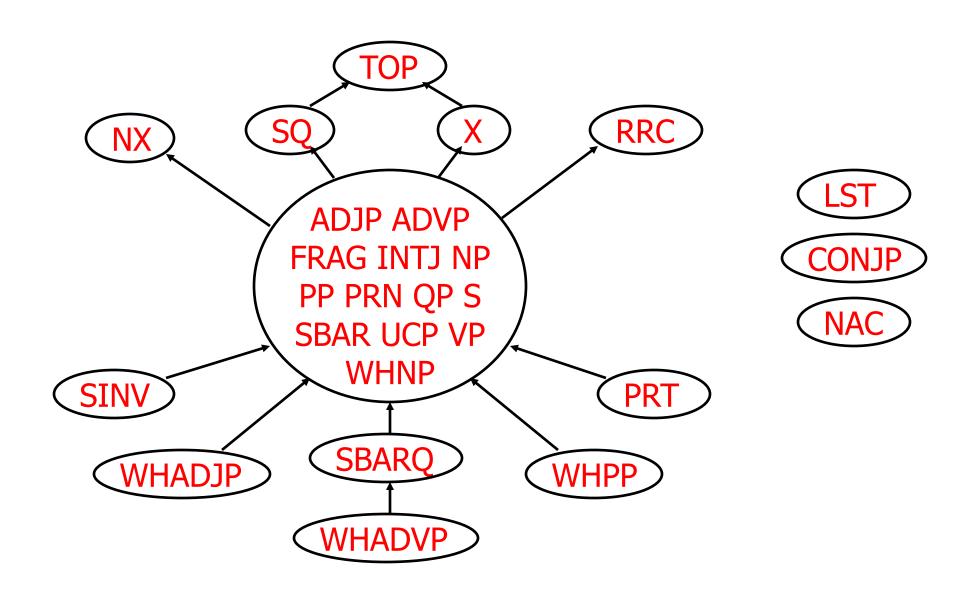
Time: Practice

Parsing with the vanilla treebank grammar:



- Why's it worse in practice?
 - Longer sentences "unlock" more of the grammar
 - All kinds of systems issues don't scale

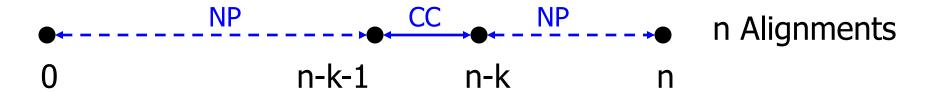
Same-Span Reachability



Rule State Reachability

Example: NP CC •

Example: NP CC NP •



Many states are more likely to match larger spans!

Efficient CKY

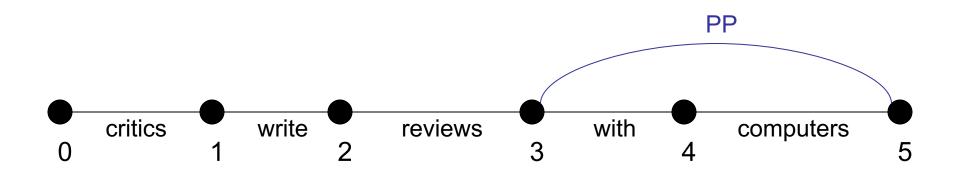
Lots of tricks to make CKY efficient

- Some of them are little engineering details:
 - E.g., first choose k, then enumerate through the Y:[i,k] which are non-zero, then loop through rules by left child.
 - Optimal layout of the dynamic program depends on grammar, input, even system details.
- Another kind is more important (and interesting):
 - Many X[i,j] can be suppressed on the basis of the input string
 - We'll see this next class as figures-of-merit, A* heuristics, coarseto-fine, etc

Agenda-Based Parsing

Agenda-Based Parsing

- Agenda-based parsing is like graph search (but over a hypergraph)
- Concepts:
 - Numbering: we number fenceposts between words
 - "Edges" or items: spans with labels, e.g. PP[3,5], represent the sets of trees over those words rooted at that label (cf. search states)
 - A chart: records edges we've expanded (cf. closed set)
 - An agenda: a queue which holds edges (cf. a fringe or open set)



Word Items

- Building an item for the first time is called discovery. Items go into the agenda on discovery.
- To initialize, we discover all word items (with score 1.0).

AGENDA

critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

CHART [EMPTY]

critics write reviews with computers

Unary Projection

 When we pop a word item, the lexicon tells us the tag item successors (and scores) which go on the agenda

```
critics[0,1] write[1,2] reviews[2,3] with[3,4] computers[4,5] NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[4,5]
```


critics write reviews with computers

Item Successors

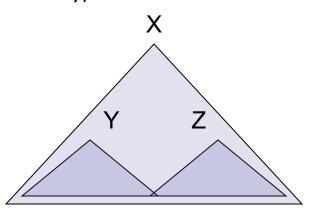
- When we pop items off of the agenda:
 - Graph successors: unary projections (NNS \rightarrow critics, NP \rightarrow NNS)

$$Y[i,j]$$
 with $X \rightarrow Y$ forms $X[i,j]$

Hypergraph successors: combine with items already in our chart

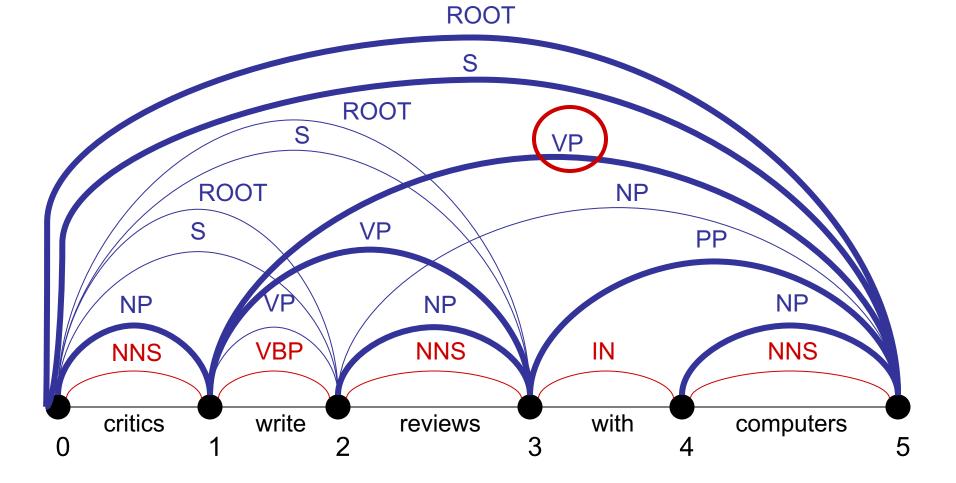
$$Y[i,j]$$
 and $Z[j,k]$ with $X \rightarrow Y Z$ form $X[i,k]$

- Enqueue / promote resulting items (if not in chart already)
- Record backtraces as appropriate
- Stick the popped edge in the chart (closed set)
- Queries a chart must support:
 - Is edge X[i,j] in the chart? (What score?)
 - What edges with label Y end at position j?
 - What edges with label Z start at position i?



An Example

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] VP[1,2] NP[2,3] NP[4,5] S[0,2] VP[1,3] PP[3,5] ROOT[0,2] S[0,3] VP[1,5] NP[2,5] ROOT[0,3] S[0,5] ROOT[0,5]



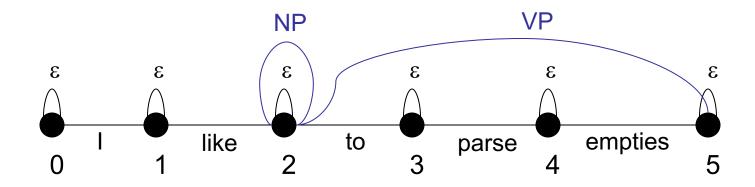
Empty Elements

Sometimes we want to posit nodes in a parse tree that don't contain any pronounced words:

I want you to parse this sentence

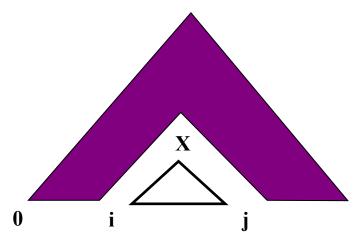
I want [] to parse this sentence

- These are easy to add to a agenda-based parser!
 - For each position i, add the "word" edge ε[i,i]
 - Add rules like NP ightarrow ϵ to the grammar
 - That's it!



UCS / A*

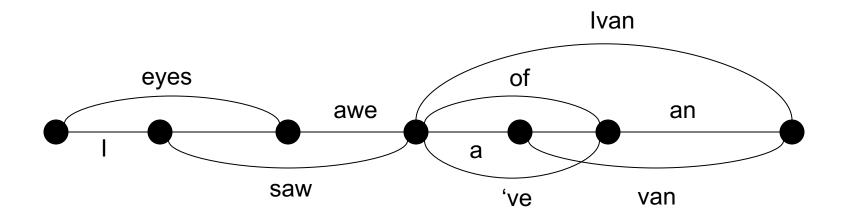
- With weighted edges, order matters
 - Must expand optimal parse from bottom up (subparses first)
 - CKY does this by processing smaller spans before larger ones
 - UCS pops items off the agenda in order of decreasing Viterbi score
 - A* search also well defined
- You can also speed up the search without sacrificing optimality
 - Can select which items to process first
 - Can do with any "figure of merit" [Charniak 98]
 - If your figure-of-merit is a valid A* heuristic, no loss of optimiality [Klein and Manning 03]



n

(Speech) Lattices

- There was nothing magical about words spanning exactly one position.
- When working with speech, we generally don't know how many words there are, or where they break.
- We can represent the possibilities as a lattice and parse these just as easily.

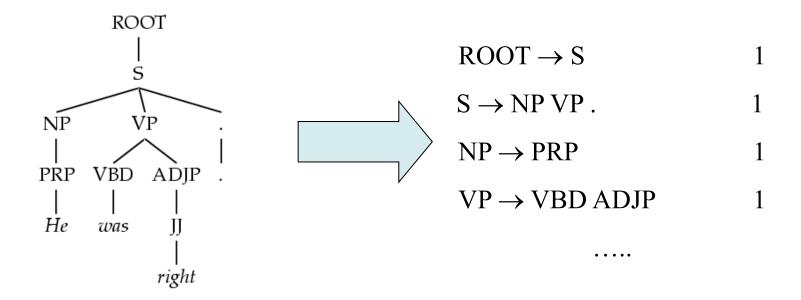


Learning PCFGs

Treebank PCFGs

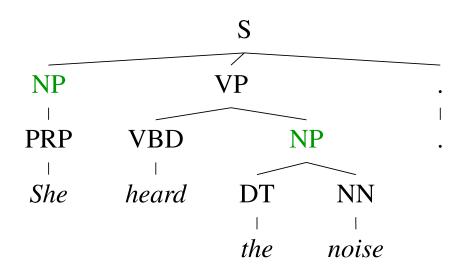
[Charniak 96]

- Use PCFGs for broad coverage parsing
- Can take a grammar right off the trees (doesn't work well):



Model	F1
Baseline	72.0

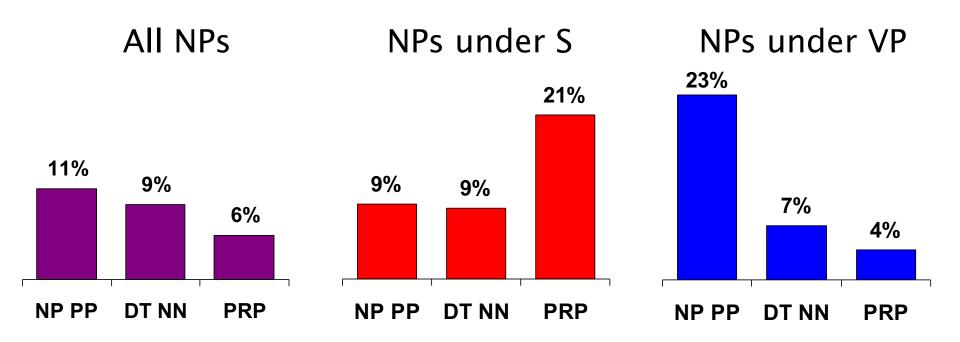
Conditional Independence?



- Not every NP expansion can fill every NP slot
 - A grammar with symbols like "NP" won't be context-free
 - Statistically, conditional independence too strong

Non-Independence

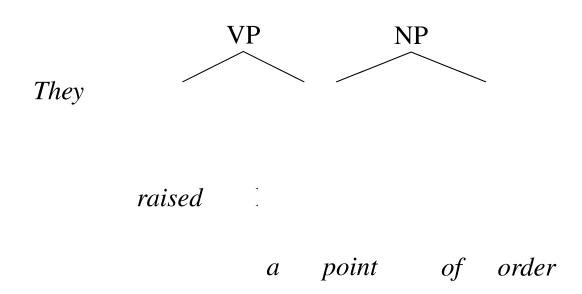
Independence assumptions are often too strong.



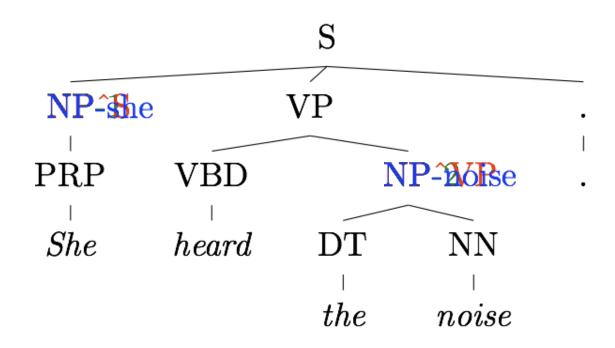
- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!

Grammar Refinement

Example: PP attachment



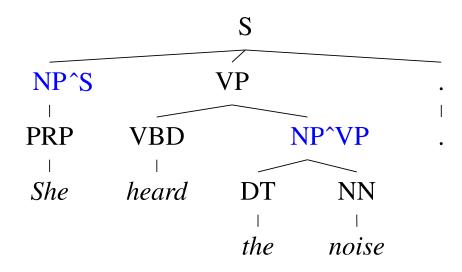
Grammar Refinement



- Structure Annotation [Johnson '98, Klein&Manning '03]
- Lexicalization [Collins '99, Charniak '00]
- Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]

Structural Annotation

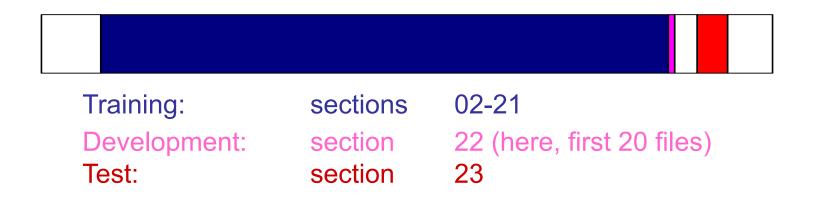
The Game of Designing a Grammar



- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation

Typical Experimental Setup

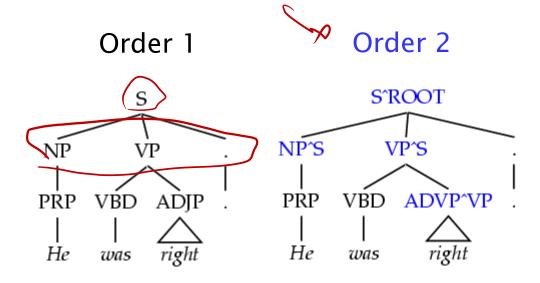
Corpus: Penn Treebank, WSJ

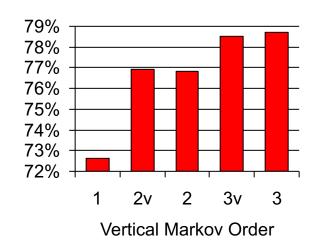


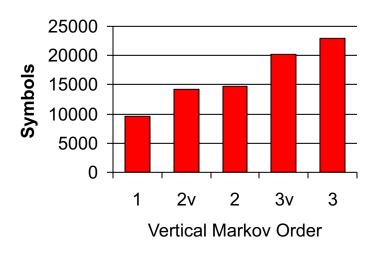
- Accuracy F1: harmonic mean of per-node labeled precision and recall.
- Here: also size number of symbols in grammar.

Vertical Markovization

 Vertical Markov order: rewrites depend on past k ancestor nodes.
 (cf. parent annotation)







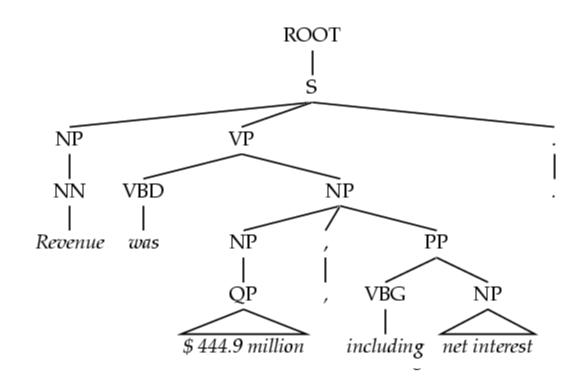
Horizontal Markovization



Unary Splits

 Problem: unary rewrites used to transmute categories so a high-probability rule can be used.

Solution: Mark unary rewrite sites with -U



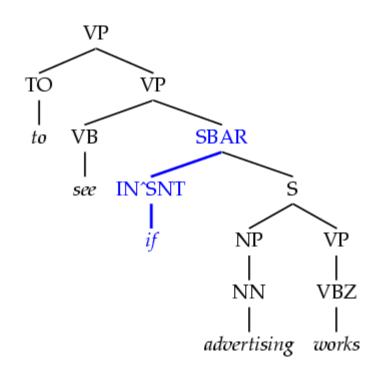
Annotation	F1	Size
Base	77.8	7.5K
UNARY	78.3	8.0K

Tag Splits

 Problem: Treebank tags are too coarse.

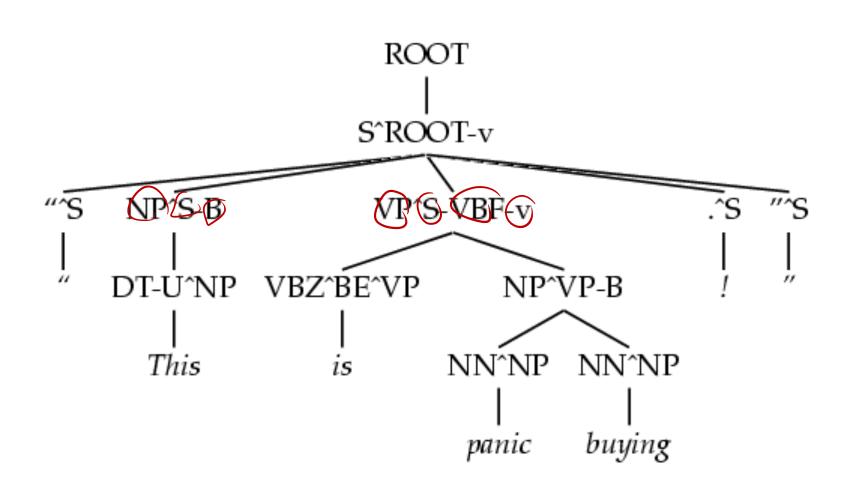
 Example: Sentential, PP, and other prepositions are all marked IN.

- Partial Solution:
 - Subdivide the IN tag.



Annotation	F1	Size	
Previous	78.3	8.0K	
SPLIT-IN	80.3	8.1K	

A Fully Annotated (Unlex) Tree



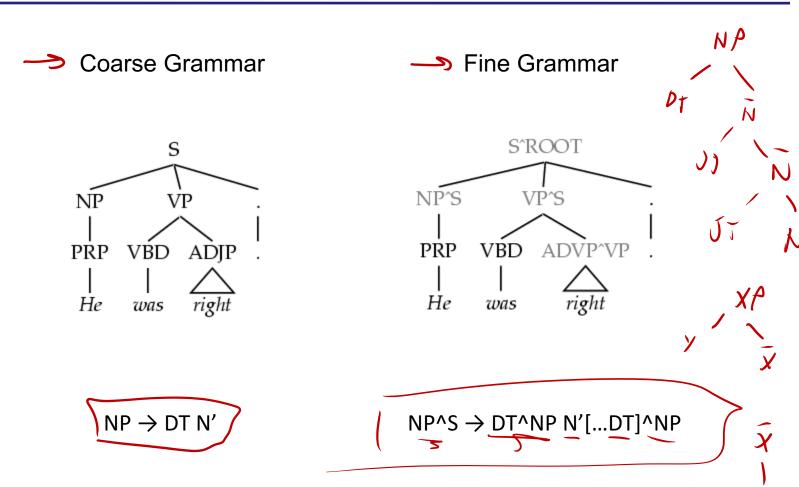
Some Test Set Results

Parser	LP	LR	F1	СВ	0 CB
Magerman 95	84.9	84.6	84.7	1.26	56.6
Collins 96	86.3	85.8	86.0	1.14	59.9
Unlexicalized	86.9	85.7	86.3	1.10	60.3
Charniak 97	87.4	87.5	87.4	1.00	62.1
Collins 99	88.7	88.6	88.6	0.90	67.1

- Beats "first generation" lexicalized parsers.
- Lots of room to improve more complex models next.

Efficient Parsing for Structural Annotation

Grammar Projections



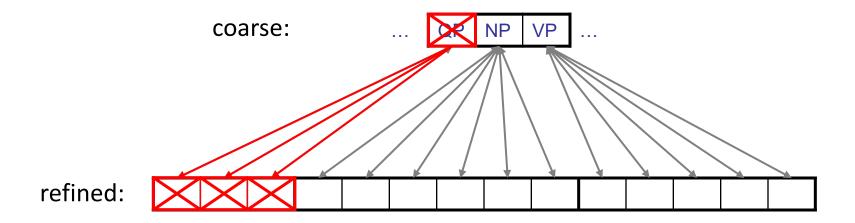
Note: X-Bar Grammars are projections with rules like $XP \rightarrow YX'$ or $XP \rightarrow X'Y$ or $X' \rightarrow X$

Coarse-to-Fine Pruning

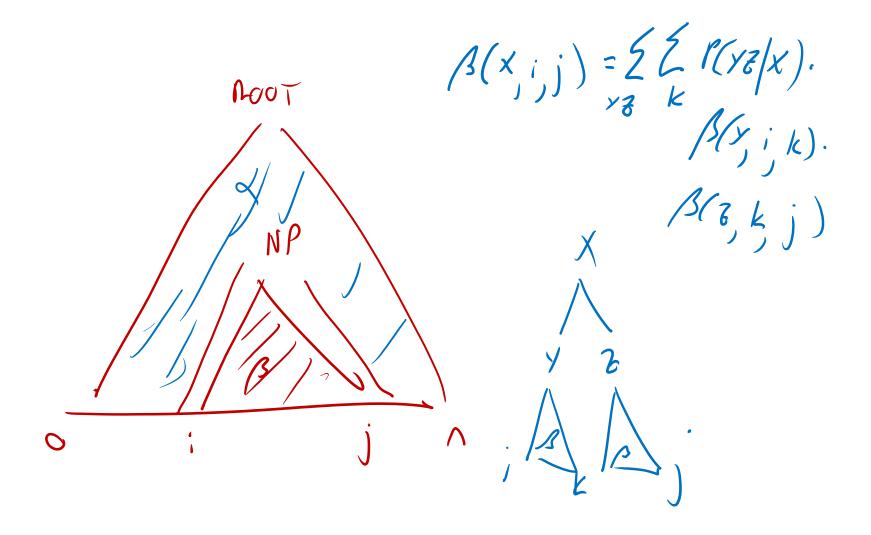
For each coarse chart item X[i,j], compute posterior probability:

$$\frac{\mathrm{P}_{\text{IN}}(X,i,j)\cdot\mathrm{P}_{\text{OUT}}(X,i,j)}{\mathrm{P}_{\text{IN}}(root,0,n)} \quad < \quad \textit{threshold}$$

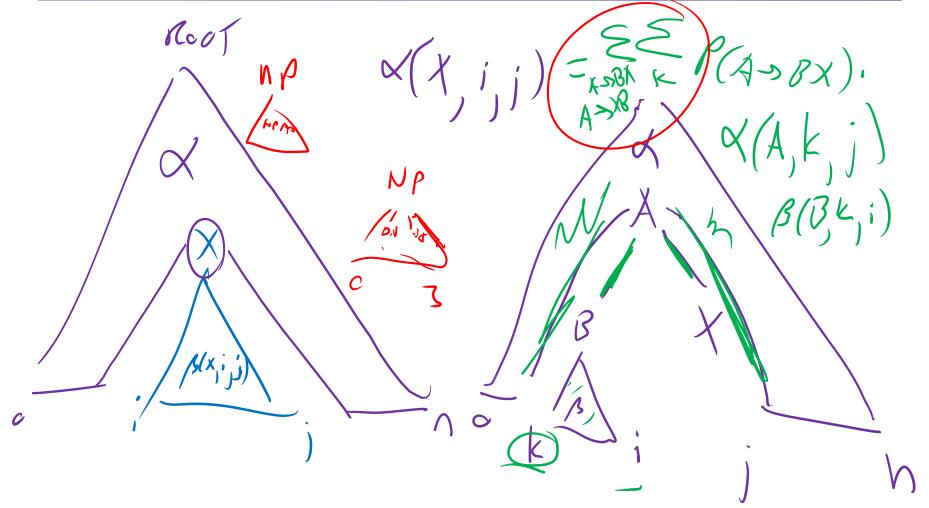
E.g. consider the span 5 to 12:



Computing (Max-)Marginals

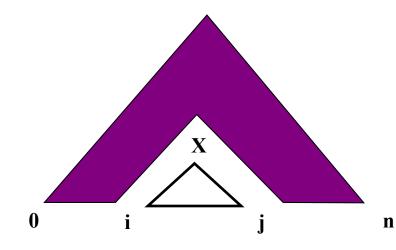


Inside and Outside Scores



Pruning with A*

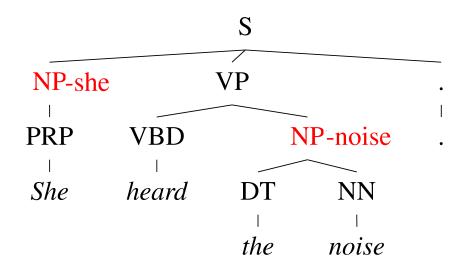
- You can also speed up the search without sacrificing optimality
- For agenda-based parsers:
 - Can select which items to process first
 - Can do with any "figure of merit" [Charniak 98]
 - If your figure-of-merit is a valid A* heuristic, no loss of optimiality [Klein and Manning 03]



A* Parsing

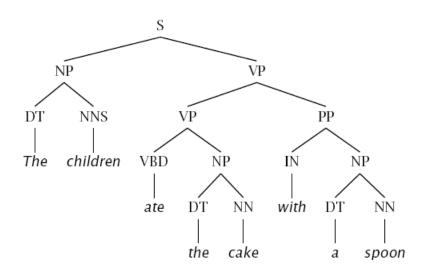
Estimate	SX	SXL	SXLR	TRUE
Summary	(1,6,NP)	(1,6,NP,VBZ)	(1,6,NP,VBZ,",")	(entire context)
Best Tree	S PP , NP VP . IN NP DT JJ NN VBD	S	S	S S, NP VP VP PRP VBZ NP VBZ NP DT NN I I I I I I I I I I I I I I I I I I
Score	-11.3	-13.9	-15.1	-18.1

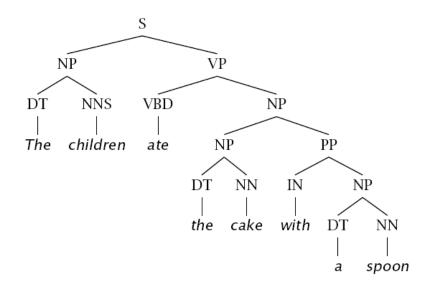
Lexicalization



- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation [Johnson '98, Klein and Manning 03]
 - Head lexicalization [Collins '99, Charniak '00]

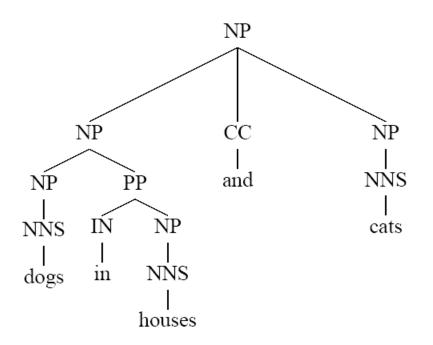
Problems with PCFGs

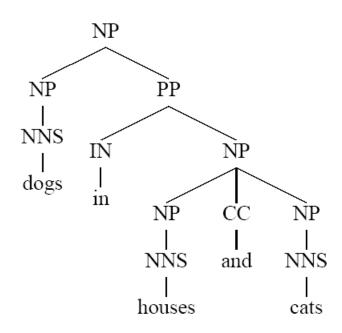




- If we do no annotation, these trees differ only in one rule:
 - VP → VP PP
 - NP → NP PP
- Parse will go one way or the other, regardless of words
- We addressed this in one way with unlexicalized grammars (how?)
- Lexicalization allows us to be sensitive to specific words

Problems with PCFGs

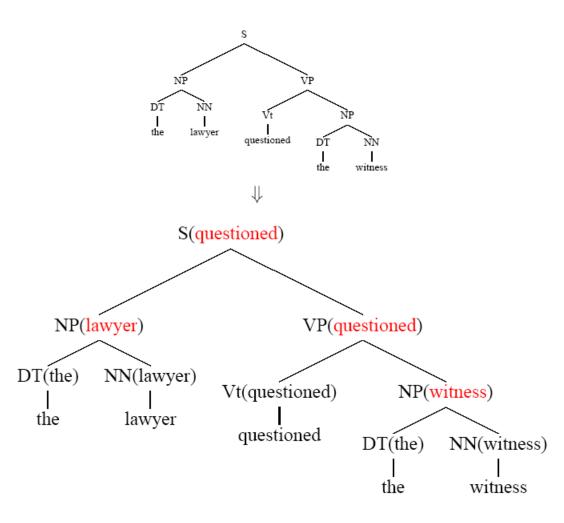




- What's different between basic PCFG scores here?
- What (lexical) correlations need to be scored?

Lexicalized Trees

- Add "head words" to each phrasal node
 - Syntactic vs. semantic heads
 - Headship not in (most) treebanks
 - Usually use head rules, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost N*
 - Take rightmost JJ
 - Take right child
 - VP:
 - Take leftmost VB*
 - Take leftmost VP
 - Take left child



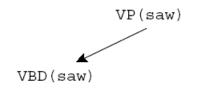
Lexicalized PCFGs?

Problem: we now have to estimate probabilities like

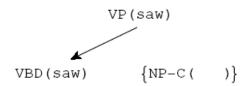
- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps

Lexical Derivation Steps

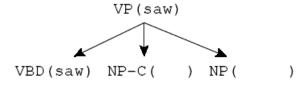
A derivation of a local tree [Collins 99]



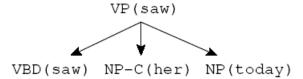
Choose a head tag and word



Choose a complement bag



Generate children (incl. adjuncts)



Recursively derive children

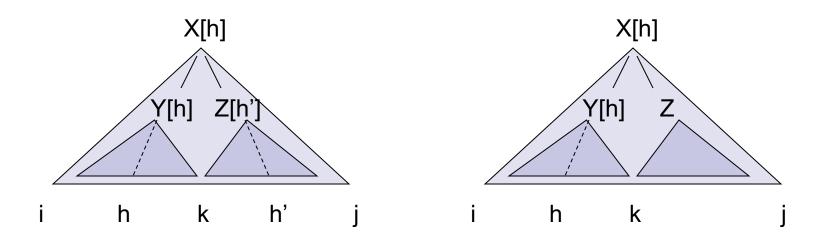
Lexicalized CKY

```
(VP->VBD...NP •) [saw]
                                                           X[h]
                                 NP[her]
               (VP->VBD •) [saw]
                                                         Y[h]
bestScore(X,i,j,h)
  if (j = i+1)
                                                      h
                                                            k
                                                                   h'
     return tagScore(X,s[i])
  else
     return
       max max score (X[h] \rightarrow Y[h] Z[h']) *
          k,h',X->YZ
                 bestScore(Y,i,k,h) *
                 bestScore(Z,k,j,h')
            max score (X[h] \rightarrow Y[h'] Z[h]) *
          k,h',X->YZ
                 bestScore(Y,i,k,h') *
                 bestScore(Z,k,j,h)
```

Efficient Parsing for Lexical Grammars

Quartic Parsing

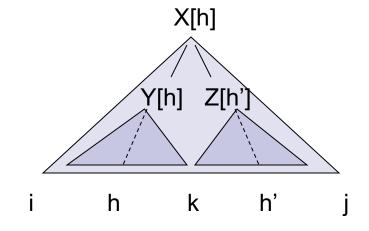
Turns out, you can do (a little) better [Eisner 99]



- Gives an O(n⁴) algorithm
- Still prohibitive in practice if not pruned

Pruning with Beams

- The Collins parser prunes with percell beams [Collins 99]
 - Essentially, run the O(n⁵) CKY
 - Remember only a few hypotheses for each span <i,j>.
 - If we keep K hypotheses at each span, then we do at most O(nK²) work per span (why?)
 - Keeps things more or less cubic (and in practice is more like linear!)



 Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)

Pruning with a PCFG

- The Charniak parser prunes using a two-pass, coarseto-fine approach [Charniak 97+]
 - First, parse with the base grammar
 - For each X:[i,j] calculate P(X|i,j,s)
 - This isn't trivial, and there are clever speed ups
 - Second, do the full O(n⁵) CKY
 - Skip any X :[i,j] which had low (say, < 0.0001) posterior</p>
 - Avoids almost all work in the second phase!
- Charniak et al 06: can use more passes
- Petrov et al 07: can use many more passes

Results

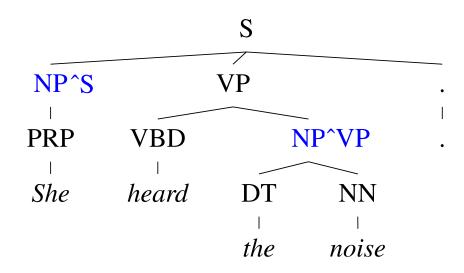
Some results

- Collins 99 88.6 F1 (generative lexical)
- Charniak and Johnson 05 89.7 / 91.3 F1 (generative lexical / reranked)
- Petrov et al 06 90.7 F1 (generative unlexical)
- McClosky et al 06 92.1 F1 (gen + rerank + self-train)

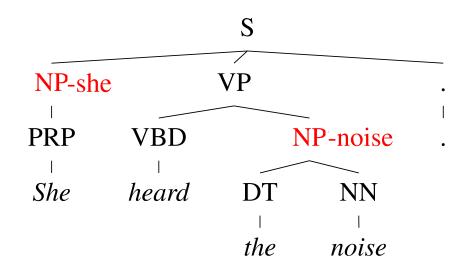
However

- Bilexical counts rarely make a difference (why?)
- Gildea 01 Removing bilexical counts costs < 0.5 F1

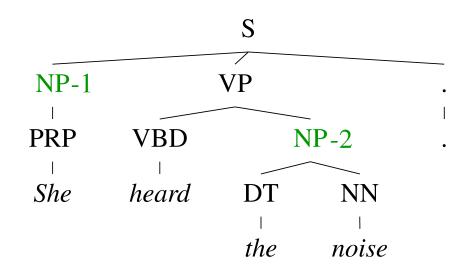
Latent Variable PCFGs



- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]

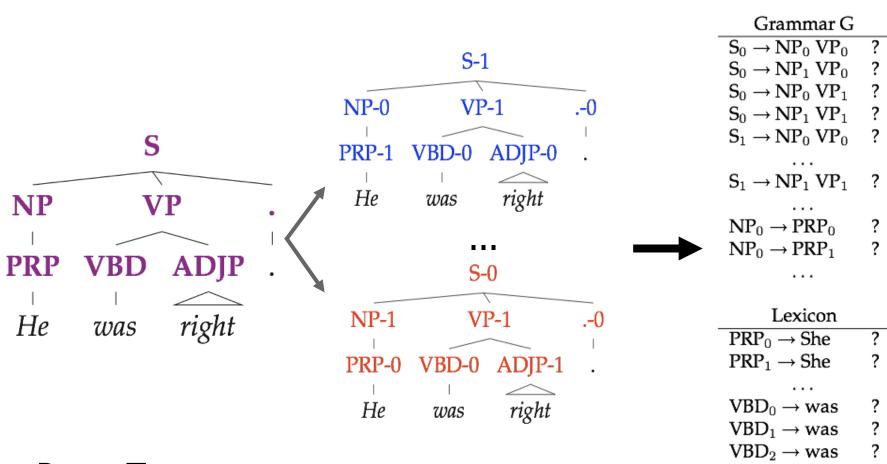


- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]
 - Head lexicalization [Collins '99, Charniak '00]



- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]
 - Head lexicalization [Collins '99, Charniak '00]
 - Automatic clustering?

Latent Variable Grammars



Parse Tree TSentence w

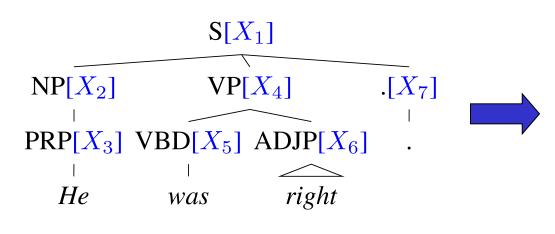
Derivations t:T

Parameters θ

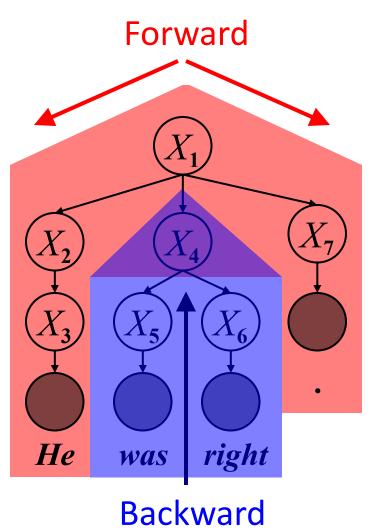
Learning Latent Annotations

EM algorithm:

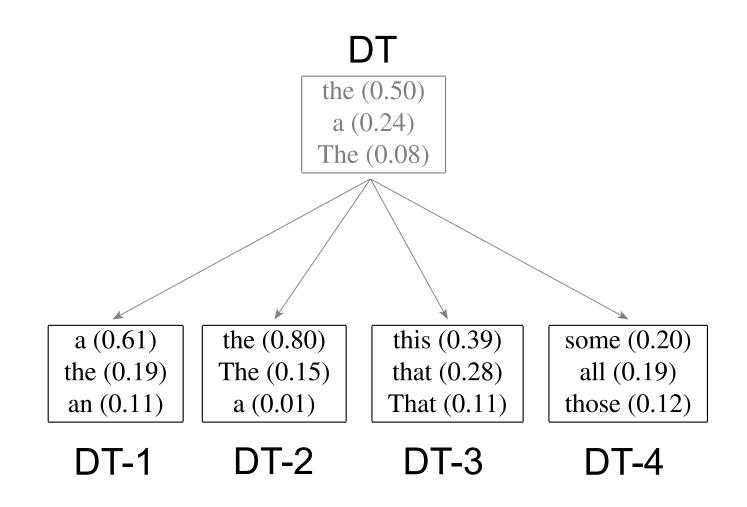
- Brackets are known
- Base categories are known
- Only induce subcategories



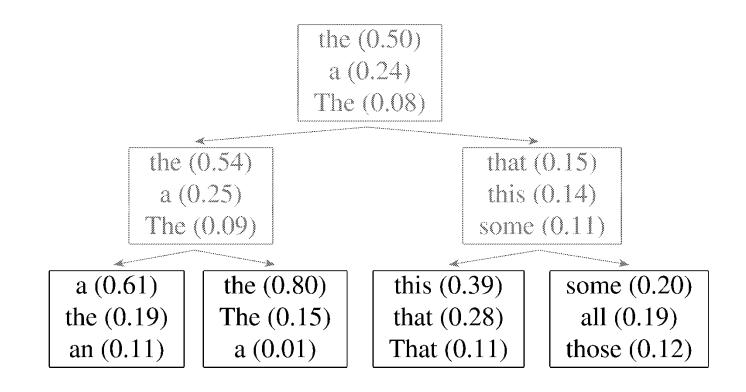
Just like Forward-Backward for HMMs.



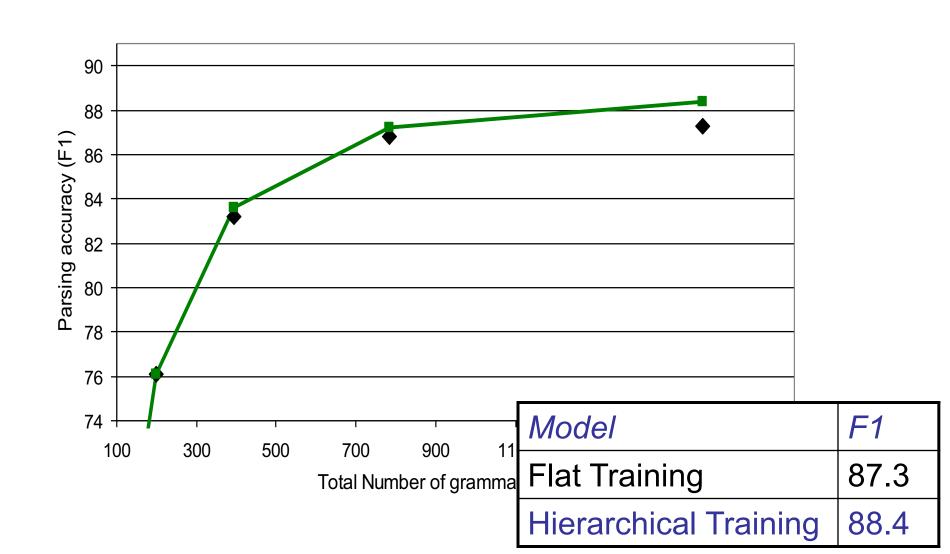
Refinement of the DT tag



Hierarchical refinement

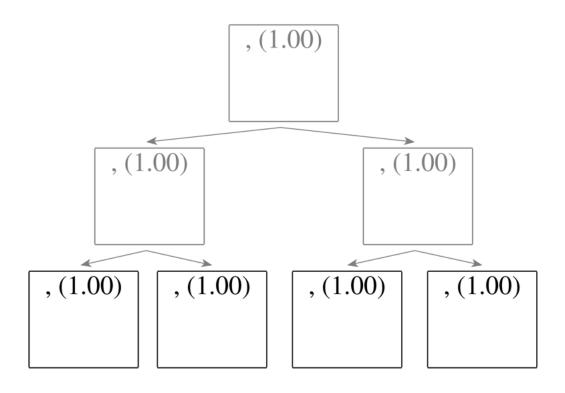


Hierarchical Estimation Results



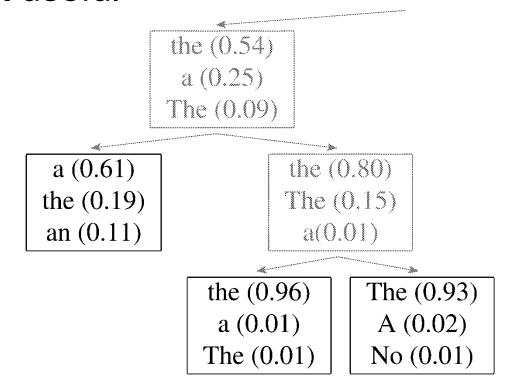
Refinement of the, tag

Splitting all categories equally is wasteful:

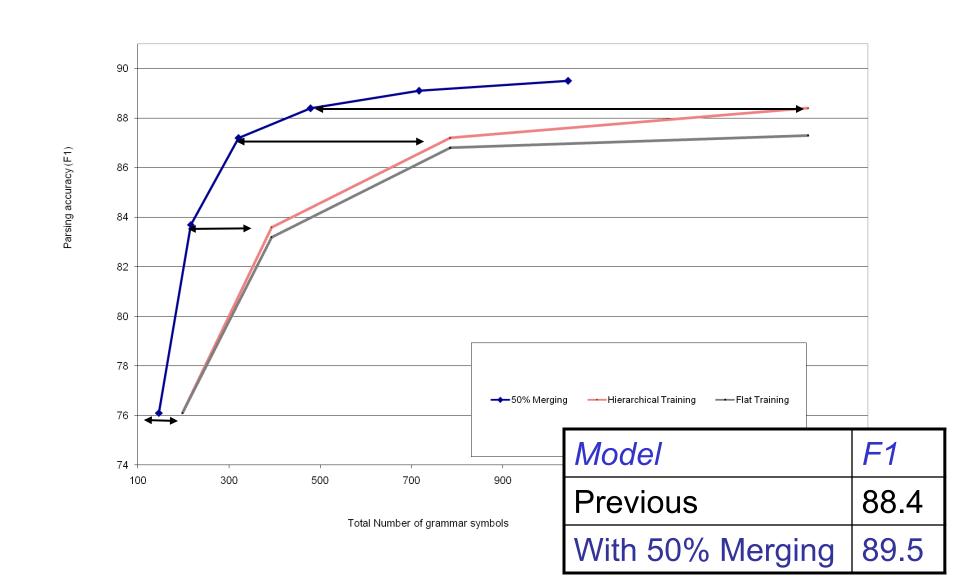


Adaptive Splitting

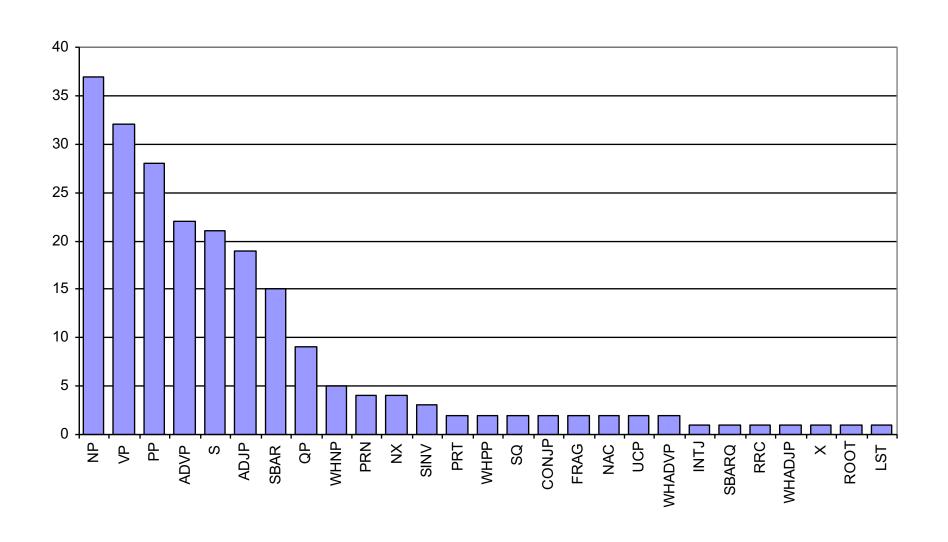
- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful



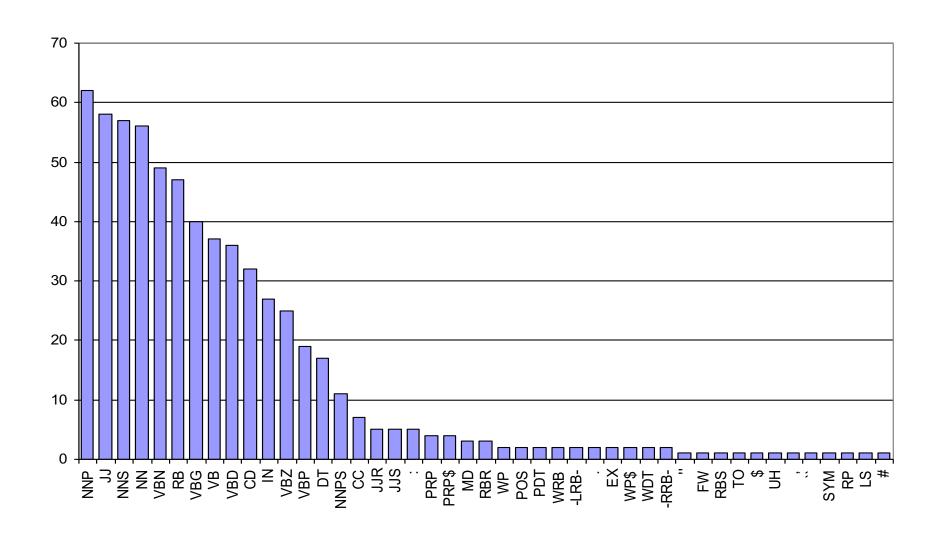
Adaptive Splitting Results



Number of Phrasal Subcategories



Number of Lexical Subcategories



Learned Splits

Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	L.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco	Street

Personal pronouns (PRP):

PRP-0	lt	He	
PRP-1	it	he	they
PRP-2	it	them	him

Learned Splits

Relative adverbs (RBR):

RBR-0	further	lower	higher
RBR-1	more	less	More
RBR-2	earlier	Earlier	later

Cardinal Numbers (CD):

CD-7	one	two	Three
CD-4	1989	1990	1988
CD-11	million	billion	trillion
CD-0	1	50	100
CD-3	1	30	31
CD-9	78	58	34

Final Results (Accuracy)

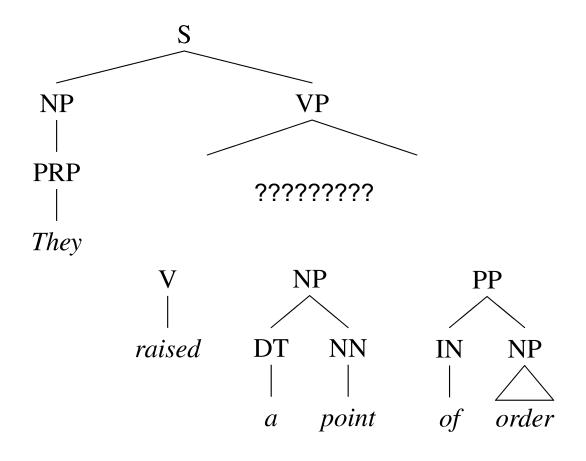
		≤ 40 words F1	all F1
□	Charniak&Johnson '05 (generative)	90.1	89.6
ENG	Split / Merge	90.6	90.1
G	Dubey '05	76.3	-
E	Split / Merge	80.8	80.1
<u>C</u>	Chiang et al. '02	80.0	76.6
CHN	Split / Merge	86.3	83.4

Still higher numbers from reranking / self-training methods

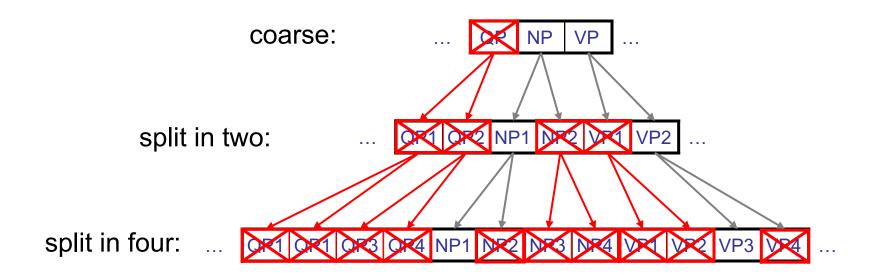
Efficient Parsing for Hierarchical Grammars

Coarse-to-Fine Inference

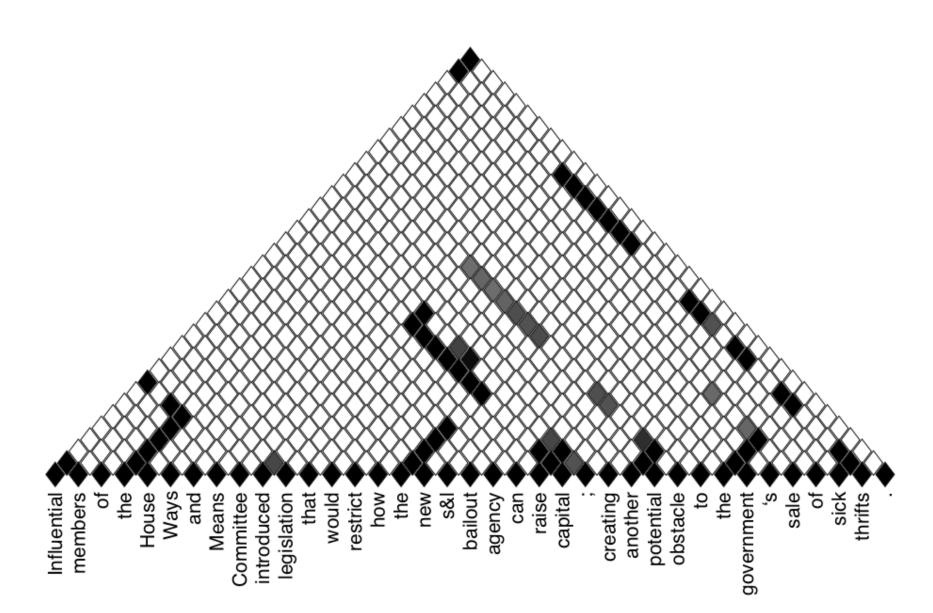
Example: PP attachment



Hierarchical Pruning



Bracket Posteriors



1621 min **111** min **35** min 15 min (no search error)

Unsupervised Tagging

Unsupervised Tagging?

- AKA part-of-speech induction
- Task:
 - Raw sentences in
 - Tagged sentences out
- Obvious thing to do:
 - Start with a (mostly) uniform HMM
 - Run EM
 - Inspect results

EM for HMMs: Process

- Alternate between recomputing distributions over hidden variables (the tags) and reestimating parameters
- Crucial step: we want to tally up how many (fractional) counts of each kind of transition and emission we have under current params:

$$count(w,s) = \sum_{i:w_i=w} P(t_i = s|\mathbf{w})$$

$$count(s \to s') = \sum_{i} P(t_{i-1} = s, t_i = s'|\mathbf{w})$$

Same quantities we needed to train a CRF!

Merialdo: Setup

Some (discouraging) experiments [Merialdo 94]

Setup:

- You know the set of allowable tags for each word
- Fix k training examples to their true labels
 - Learn P(w|t) on these examples
 - Learn P(t|t₋₁,t₋₂) on these examples
- On n examples, re-estimate with EM
- Note: we know allowed tags but not frequencies

EM for HMMs: Quantities

Total path values (correspond to probabilities here):

$$\alpha_i(s) = P(w_0 \dots w_i, s_i)$$

= $\sum_{s_{i-1}} P(s_i|s_{i-1}) P(w_i|s_i) \alpha_{i-1}(s_{i-1})$

$$\beta_i(s) = P(w_i + 1 \dots w_n | s_i)$$

$$= \sum_{s_{i+1}} P(s_{i+1} | s_i) P(w_{i+1} | s_{i+1}) \beta_{i+1}(s_{i+1})$$

The State Lattice / Trellis

\wedge	\wedge	\wedge	\(\)	\wedge	\wedge
N	N	N	N	N	N
\bigcirc	V	V	V	\bigcirc	\bigcirc
J	J	J	J	J	J
D	D	D	D	D	D
\$	\$	\$	\$	\$	\$
START	Fed	raises	interest	rates	END

EM for HMMs: Process

From these quantities, can compute expected transitions:

$$count(s \to s') = \frac{\sum_{i} \alpha_i(s) P(s'|s) P(w_i|s) \beta_{i+1}(s')}{P(\mathbf{w})}$$

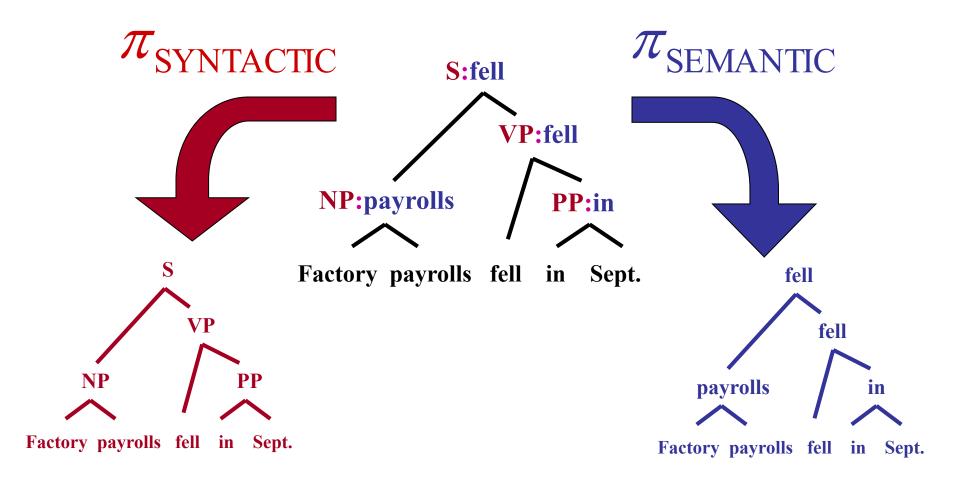
And emissions:

$$count(w,s) = \frac{\sum_{i:w_i=w} \alpha_i(s)\beta_{i+1}(s)}{P(\mathbf{w})}$$

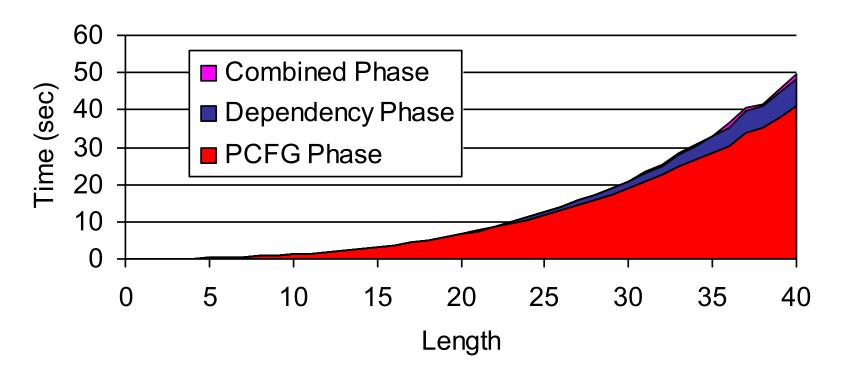
Merialdo: Results

Nι	Number of tagged sentences used for the initial model								
	0	100	2000	5000	10000	20000	all		
Iter	Correct tags (% words) after ML on 1M words								
0	77.0	90.0	95.4	96.2	96.6	96.9	97.0		
1	80.5	92.6	95.8	96.3	96.6	96.7	96.8		
2	81.8	93.0	95. <i>7</i>	96.1	96.3	96.4	96.4		
3	83.0	93.1	95.4	95.8	96.1	96.2	96.2		
4	84.0	93.0	95.2	95.5	95.8	96.0	96.0		
5	84.8	92.9	95.1	95.4	95.6	95.8	95.8		
6	85.3	92.8	94.9	95.2	95.5	95.6	95.7		
7	85.8	92.8	94.7	95.1	95.3	95.5	95.5		
8	86.1	92.7	94.6	95.0	95.2	95.4	95.4		
9	86.3	92.6	94.5	94.9	95.1	95.3	95.3		
10	86.6	92.6	94.4	94.8	95.0	95.2	95.2		

Projection-Based A*



A* Speedup

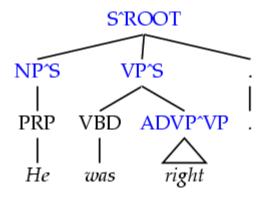


 Total time dominated by calculation of A* tables in each projection... O(n³)

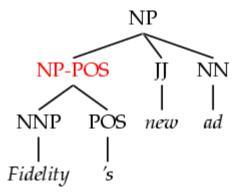
Breaking Up the Symbols

• We can relax independence assumptions by encoding dependencies into the PCFG symbols:

Parent annotation [Johnson 98]



Marking possessive NPs



What are the most useful "features" to encode?

Other Tag Splits

- UNARY-DT: mark demonstratives as DT^U ("the X" vs. "those")
- UNARY-RB: mark phrasal adverbs as RB^U ("quickly" vs. "very")
- TAG-PA: mark tags with non-canonical parents ("not" is an RB^VP)
- SPLIT-AUX: mark auxiliary verbs with –AUX [cf. Charniak 97]
- SPLIT-CC: separate "but" and "&" from other conjunctions
- SPLIT-%: "%" gets its own tag.

F1	Size
80.4	8.1K
80.5	8.1K
81.2	8.5K
81.6	9.0K
81.7	9.1K
81.8	9.3K